Physical Biology

Bio-322 4 credits, 3h per week

Physical Biology

- What?
- Why?
- How?

Course Outline

- 1. Introduction
- 2. Molecular Biophysics
- 3. Cellular biophysics
- 4. Biophysical techniques
- 5. Experiments: mechanics of DNA, mobility of biomolecules

Overview

Course timings:

Mon 14-1500h

Wed 14-1500h

Fri 12-1300h

Total time:

46 lectures (incl. Colloquia)

Evaluation

Exams (mid and end-semester): 50%

Assignments and internal assessment: 50%

Instructors

- Chaitanya Athale
- G. Pavan Kumar
- Shiva Patil
- Saikrishna Kayarat

Plan

Time line:

Time period	Instructor	Topics	No. of
			lectures
2-6 Aug	Chaitanya	Introduction	3
9-27 Aug	Pavan	Molecular biophysics	9
30 Aug- 1	Shiva	Experimental bio-molecular	2
Sept		mechanics	
2-8 Sept	Sai	Molecular structure	2
10-24 Sept	Pavan	Biophysical Methods: Light,	7
-		NMR, Raman	
27 Sept- 15	Chaitanya	Cellular Biophysics	22
Nov	2	1 2	
17-22 Nov	Shiva	Measuring diffusion in cells-	3
		FCR, FRĂP	

Crescograph

J.C. Bose (1858-1937)

- Wireless communication (1894/5)
- Plant growth measurement by Crescograph (1919)
- Electric nature of plant sensory conduction (Bose, J. C., Researches on Irritability of Plants, 1913.)
- Cell membrane potential measurements

Modern Crescograph

A: gold chain B: hook C: 5mg counter weight D: lever arm E: transformer core F: micrometer

Plants Response to Electrical Stimulus

Copyright © 2008. American Society of Plant Biologists. All rights reserved.

Closing of the trap with a 14- μ C electrical stimulus.

0

33 ms

67 ms

100 ms

133 ms

200 ms

Volkov A. G. et.al. Plant Physiol. 2008:146:694-702

233 ms

267 ms

Biological Physics

Mechanics Equilibrium Steady state Entropy **Electrostatics** Beams and structures Water **Biological dynamics** Molecular motors Electricity

Contributors to Biological Physics

- Francis Crick (DNA structure)
- Alan Turing (theory of periodic biological structures)
- Max Delbrück (replication of viruses)
- Linus Pauling (structure of Hemoglobin)
- G.N. Ramachandran (protein conformations)

Biological Model Building

- Physical and Chemical Principles
- Quantitative experiments
- Facts
 - Observations (eg. no. of proteins)
 - Mechanisms (eg. DNA->RNA->Protein)
 - Hypotheses (eg. Bacterial origin of mitochondria)

Common Strand?

Molecules

(A) Nucleic acids(B) Proteins(C) Lipids(D) Sugars

Water

Figure 1.1 Physical Biology of the Cell (© Garland Science 2009)

Polymers: Nucleic Acids and Proteins

- DNA sequence <-> Protein sequence
- 2 Polymer languages
- DNA: codons (3 base pairs)
- Protein: protein folds α-helix, β-sheet (combinations of amino acids)

Figure 1.2 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.3a Physical Biology of the Cell (© Garland Science 2009)

Figure 1.3b Physical Biology of the Cell (© Garland Science 2009)

2 nm

0.34 nm **DNA** Structure minor groove **B-DNA** A-DNA **Z-DNA** major Helix Right-Right-Leftgroove handed handed handed **Rise/bp** 0.34 0.23 0.38 [**nm**] **Bp/turn** 10.5 11 12 2 **Diameter** [**nm**]

Figure 1.3c Physical Biology of the Cell (© Garland Science 2009)

Figure 1.4 Physical Biology of the Cell (© Garland Science 2009)

Model Building

- Abstraction and simplification
- Analytical models of predictive value
- Collection of models

Figure 1.6 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.8 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.9 Physical Biology of the Cell (© Garland Science 2009)

Drawn for 'Unwinding the "Gordian knot" of helicase action' by Panos Soultanas and Dale B. Wigley, TiBS 26, January 2001, 47-54.

Figure 1.10a Physical Biology of the Cell (© Garland Science 2009)

Membrane Structures of Mitochondria

Figure 1.10b Physical Biology of the Cell (© Garland Science 2009)

Electron Transport Chain

Figure 1.10c Physical Biology of the Cell (© Garland Science 2009)

Mitochondrial Division

Figure 1.10d Physical Biology of the Cell (© Garland Science 2009)

Gene Expression: Qualitative

Gene Expression: Quantitative

Figure 1 11c Physical Biology of the Coll (@ Carland Science 2000)

Models

Simple Models

- Spring (harmonic oscillator)
- Hooke's law

Potential energy
$$energy = \frac{1}{2}k \cdot x^2$$

Restoring force $F = -k \cdot x$

Figure 1.12a Physical Biology of the Cell (© Garland Science 2009)

Biological Instances of a Simple Harmonic Oscillator

DNA polymer wriggling in solution

flagellum beating on a swimming sperm

cell membrane fluctuating

molecules in an energy landscape

Figure 1.12b Physical Biology of the Cell (© Garland Science 2009)

Classes of Physical Models

- Simple harmonic oscillator
- Ideal gas
- Two-level systems and Ising model
- Ramdom walks, entropy etc.
- Poisson-Boltzmann model of charge
- Newtonian fluids and Navier-Stokes equation
- Diffusion and random walks
- Rate equation models of chemical kinetics

Estimates and Models

Estimating genome size in bp from image of bacteriophage genome

Wrong Models are Good

- Inappropriate model (e.g. Incorrect dimensions)
- Lacking detail (e.g. Incomplete)
- Importance of different considerations (e.g. E. coli movement and Brownian motion vs. viscous drag vs. inertia)
- Introduce correct physical model and The Best parameters and compare with experiment

Biological Estimates-1

Scale	Quantity	Symbol	Rule of thumb
E. coli	Cell volume	V _{Ecoli}	$\approx 1 \ \mu m^3$
	Cell mass	m _{Ecoli}	≈1 pg
	Cell cycle time	t _{Ecoli}	≈3000s
	Cell surface area	A _{Ecoli}	$\approx 6 \ \mu m^2$
	Swimming speed	V _{Ecoli}	≈20 µm/s
	Genome length	N_{bp}^{Ecoli}	$\approx 5 \text{ x } 10^6 \text{ bp}$
Yeast	Volume of the cell	V _{yeast}	$\approx 60 \ \mu m^3$
	Cell mass	m _{yeast}	≈60 pg
	Cell diameter	d _{yeast}	≈5 µm
	Cell cycle time	t _{yeast}	$\approx 1.2 \text{ x } 10^4 \text{ min}$
	Genome length	N _{bp} ^{yeast}	$\approx 10^7 bp$

Biological Estimates-2

Scale	Quantity	Symbol	Rule of thumb
Organelles	Diameter of nucleus	d _{nucleus}	≈5 µm
	Length of mitochondrion	l _{mito}	$\approx 2 \ \mu m$
	Diameter of transport vescicles	d _{vescicle}	≈50 nm
Water	Volume of molecule	V _{H2O}	$\approx 10^{-2} \text{ nm}^3$
	Density of water	Q	1 g/cm ³
	Viscosity of water	η	1 centipoise (10 ⁻² g/(cm-s))
	Hydrophobic embedding energy	≈E _{hydr}	25 cal/mol-Å ²

 $k_B T \approx 4 \text{ pN-nm}$ (at room temperature in K)

Book List

- 1. Microbe hunters-Paul de Kruif
- 2. What is life- Erwin Schroedinger