Physical Biology

Bio322

http://www.iiserpune.ac.in/~cathale/ courses/bio322-2010.html

Construction Plans

- Organelles
- Cells
- Organisms
- Estimates of size

Fundamental Unit of Life

- Cell
- Energy consumption, structure formation
- Replication
- Hooke (1665) using cork and compound microscope
- Leewenhoek (1674) first living cell-Spirogyra

Origin of the Cell

Primeval Soup Self-replicating molecules (RNA?) Peptide formation Carbohydrates Clay Genes first or metabolism first Lipid layers Primitive cellular compartments

Astrobiology, Artificial Life, Prebiotic Life, PNA's, Replicating vescicles

Search for the Minimal Cell

Mycoplasma genitalium Genome size: 5.8 x 10⁵ basepairs 482 protein-coding genes ~100 dispensible genes

http://cmr.jcvi.org

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Synthetic genome Phenotype Replication

Gibson et al. (May 2010)

Model Organism: E. coli

- Easy to isolate (gut bacterium found in fecal matter)
- Growth in anaerobic and anaerobic conditions
- Mutagenesis easy: e.g. nucleotide synthesis mutants
- Experiments showing insight

Figure 2.1 Physical Biology of the Cell (© Garland Science 2009)

Ribosome Census

- \geq 20% protein component of cell is ribosomal
- Assume all ribosomal protein bound
- What is the number of ribosomes in an E. coli cell?
- ➢ Mass of single Ribosome ~ 2.5 Mda
- Ribosome contains 1/3 protein, 2/3 RNA

Ribosomes in Cell: Relative Volume

- Ribosome diameter ~ 20 nm
- Total volume?
- What is the percent volume occupied by ribosomes relative to cell volume?

No. of Lipid Molecules/cell

Shape of cell gives surface area.
N_{lipid} = ?
Area per lipid ~ 0.5 nm²

Water Molecules

>70% cell mass is water > $N_{H2O}=?$

Inorganic Ions

$> [K] \sim 100 \text{ mM}$

>

Observed Census Results

Substance	% of total dry weight	Number of molecules
Macromolecule		
Protein	55.0	2.4×10^6
RNA	20.4	
23S RNA	10.6	19,000
16S RNA	5.5	19,000
5S RNA	0.4	19,000
Transfer RNA (4S)	2.9	200,000
Messenger RNA	0.8	1,400
Phospholipid	9.1	22×10^6
Lipopolysaccharide	3.4	$1.2 imes 10^6$
DNA	3.1	2
Murein	2.5	1
Glycogen	2.5	4,360
Total macromolecules	96.1	
Small molecules		
Metabolites, building blocks, etc.	2.9	
Inorganic ions	1.0	
Total small molecules	3.9	

Table 2.1 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.3 Physical Biology of the Cell (© Garland Science 2009)

Concentrations and Spacing

If there is only 1 copy of a molecule in an E. coli cell, what is its concentration in Molarity?

What is the inter-molecular spacing for a given concentration?

Concentrations and Spacing

Figure 2.4 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.4a Physical Biology of the Cell (© Garland Science 2009)

Next

- Experimental tools to look inside cells
- Spatial scales of biological structure
- DNA
- Organelles
- Membrane
- Assemblies
- Viruses
- Tissues

Probing Biological Structure

- Radiation
- Forces

Figure 2.5 Physical Biology of the Cell (© Garland Science 2009)

FLUORESCENCE MICROSCOPY

Figure 2.5a Physical Biology of the Cell (© Garland Science 2009)

ATOMIC-FORCE MICROSCOPY

Figure 2.5b Physical Biology of the Cell (© Garland Science 2009)

1 μm

Figure 2.5c Physical Biology of the Cell (© Garland Science 2009)

Figure 2.6 Physical Biology of the Cell (© Garland Science 2009)

cryo-electron microscopy

Figure 2.6a Physical Biology of the Cell (© Garland Science 2009)

image reconstruction

Figure 2.6b Physical Biology of the Cell (© Garland Science 2009)

1000 µm Figure 2.7 Physical Biology of the Cell (© Garland Science 2009)

Powers of 10

Spatial scale with relation to E. coli

Smaller than E. coli

Molecules, assemblies, cells

Figure 2.7 (part 1) Physical Biology of the Cell (© Garland Science 2009)

Higher Scales

Origin of multi-cellularity

Figure 2.7 (part 2) Physical Biology of the Cell (© Garland Science 2009)

Diversity

Unity of governing principles Diversity of form Model cell types

Yeasts

• Candida albicans

Why study yeasts?

Saccharomyces cerevisae mitochondria in different growth conditions

Eukaryotic Cell: Size Scale

Yeast diameter ~ $5 \,\mu m$ Volume Area Nucleus diameter ~ Genome $1.2 \ge 10^7$ bps Histones Nucleosome: How many nucleosomes? 150 bps per nucleosome, 50 bps spacer Vol per histone octamer: 230 nm³ Volume of base-pair? Packing fraction = Vol genome/ Vol nucleus = ?

Nucleosome

Proteins and Lipids

Yeast N_{proteins}=? Density similar to E. coli E. coli N_{protein} = total protein mass/mass per protein

$$15*10^{-14} \text{ g}/5*10^{-20} \text{ g} \sim 3 \text{ x} \ 10^{6}$$

Yeast $N_{lipids} = ?$

Figure 2.10 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.10a Physical Biology of the Cell (© Garland Science 2009)

Figure 2.10c Physical Biology of the Cell (© Garland Science 2009)

Figure 2.11 Physical Biology of the Cell (© Garland Science 2009)

- Dilute suspension of RBCs
- Microfabrication of silicon wafer capillary
- 2-4 micron wide capillaries
- Mobility is active (Ca²⁺ dependent)

Figure 2.12a Physical Biology of the Cell (© Garland Science 2009)

Figure 2.12b Physical Biology of the Cell (© Garland Science 2009)

Figure 2.12c Physical Biology of the Cell (© Garland Science 2009)

Figure 2.13 Physical Biology of the Cell (© Garland Science 2009)

Endoplasmic Reticulum

Pancreatic cell dominated by E.R.

Endoplasmic Reticulum

DiOC6 membrane label

Figure 2.15 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.15a Physical Biology of the Cell (© Garland Science 2009)

a

Macromolecular[®] Assemblies

Figure 2.16a Physical Biology of the Cell (© Garland Science 2009)

Figure 2.16b Physical Biology of the Cell (© Garland Science 2009)

replisome

Figure 2.16c Physical Biology of the Cell (© Garland Science 2009)

Figure 2.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 2.16e Physical Biology of the Cell (© Garland Science 2009)

Figure 2.16f Physical Biology of the Cell (© Garland Science 2009)

Helical Assemblies

Figure 2.17 Physical Biology of the Cell (© Garland Science 2009)

Superstructures

Figure 2.18 Physical Biology of the Cell (© Garland Science 2009)

Viral Capsids

bacteriophage P2

φ6 nucleocapsid

T=3 Ty retro

cowpea mosaic

bacteriophage

φX174

TBE-RSP

cowpea chlorotic

mottle

B19

L-A

bacteriorhodopsin

300Å

Genome 10 kb

Electron microscopy tilt series

Architecture of HIV

Diameter ~ 120-150 nm

Lipid bilayer radius ~ 5nm

Gag protein radius ~ 2 nm

$$N_{Gag} = ?$$

(A) Gag protein p6 NC CA MA Lipid bilayer (C) mature virion (B) immature virion viral spike protein matrix genome envelope capsid

41 kDa

100 nm

Figure 2.22 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.23 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.23 (part 1) Physical Biology of the Cell (© Garland Science 2009)

Figure 2.23 (part 2) Physical Biology of the Cell (© Garland Science 2009)

Figure 2.23 (part 3) Physical Biology of the Cell (© Garland Science 2009)

Figure 2.24 Physical Biology of the Cell (© Garland Science 2009)

Communities of Cells

Biofilm Formation

Figure 2.27 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.28 Physical Biology of the Cell (© Garland Science 2009)

և 50 μm

Figure 2.29 Physical Biology of the Cell (© Garland Science 2009)

Epithelial Sheets

(A)

(B)

Tissue Organization

Figure 2.31 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.32 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.33 Physical Biology of the Cell (© Garland Science 2009)

Drosophila

500 μm

Gene Expression Patterns in Drosophila Development

Evenskipped (eve)

Figure 2.35 Physical Biology of the Cell (© Garland Science 2009)

C. elegans

100 μm

959 cells

Figure 2.36 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.37 Physical Biology of the Cell (© Garland Science 2009)

Next

- Nucleic acids, peptides and proteins
- Biological reactions and interactions –
- function aspects of various bio-molecules
- ATPsynthases and motor proteins,
- Dynamics of molecular motors (2)
- engineering and design of biomolecules.