Energy and Equilibrium

2010-10-18

http://www.iiserpune.ac.in/~cathale/lects/bio322-2010.html

Diffusion and thermal energy

ENERGY

Listeria Inside a Cos7 Cell

Kuo, S.C., and McGrath, J. L. (2000) Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, p1026

Thermal Energy Scale

Time scales and feasibility of reactions determined by energies

Thermal energy available inside living systems

 $k_BT = 1.38x10^{-23} \text{ J/K } x 300 \text{ K} \approx 4.1x10^{-21} \text{ J}$ = ?? pN-nm

Diffusion Times and Length Scales

For a diffusing particle inside a cell

$$t_{diffusion} \approx x^2/D$$

Molecules Moving Inside Cells

Stokes-Einstein Relation

$$D=k_BT/f$$

f = stokes frictional force

= $6\pi\eta r$ (spherical object)

Diffusion coefficient $D (m/s^2)$

Dynamic viscosity η (Pa-s)

Radius of particle r (m)

A. Einstein "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik 17 pp. 549-560 (1905)

Getting Around a Cell

• How long could it take a single protein molecule to traverse the length of E. coli?

```
r = 2.5 \text{ nm}
\eta \approx 1x10^{-3} \text{ N-s/m}^2
D=?
L_{\text{E.coli}} \sim 1 \text{ } \mu\text{m}
t_{\text{e.coli}} = ?
```

• Squid giant axon length 10 cm. t=?

Molecular Motors

- Kinesin motor speed in cells $\sim 1 \mu m/s$
- Measured effective speeds of protein in axon $\sim 0.02 \ \mu \text{m/s}$
- Processive vs. Non-processive motion

Estimating Force Exerted by Single Motors

F_M=motor force

F_D=viscous drag force

v=speed

Hunt et al. (1994) Biophys. J.

Figure 5.1 Physical Biology of the Cell (© Garland Science 2009)

Biological Minimzation

- Equilibrium
- Out-of-equilibrium
- Fast processes vs. slow processes

Biochemical Equilibrium Assumptions

Enzyme Substrate interactions

$$A \xrightarrow{k+} B \xrightarrow{r} C$$

$$k-$$

Sub-processes and Approach to Equilibrium

If conversion from B->C too rapid, equilibrium assumption not valid

MECHANICAL EQUILIBRIUM

microtubule growing against a barrier

proteins partitioning in a density gradient

CHEMICAL EQUILIBRIUM

protein folding and unfolding

carboxylic acid group becoming protonated and deprotonated

ligand binding and unbinding to receptor

ion channel opening and closing

Figure 5.7 Physical Biology of the Cell (© Garland Science 2009)

2010-10-20

Diffusion Coefficient (D)

Derive random walk and diffusion coefficient and msd relation

Derive expression for diffusion coefficient in stokes-einstein formulation

Protein Minimization

unfolded polypeptide

free energy lowered by sequestering hydrophobic residues

polar residues participate in hydrogen bond network

folded conformation in aqueous environment

2010-10-22

ENERGY MINIMIZATION

Spring with Weight

Figure 5.11a Physical Biology of the Cell (© Garland Science 2009)

Mechanical Equilibrium as Energy Minimization

 $x - x_0$ (arb. units)

Equilibrium

$$dU/dx = k(x_{eq}-x_0)-mg = 0$$

$$x_{eq} =$$

Springs Everywhere

Figure 5.12 Physical Biology of the Cell (© Garland Science 2009)

Optical Trap laser beam **DNA** tether optical bead

Figure 5.13a Physical Biology of the Cell (© Garland Science 2009)

Figure 5.13b Physical Biology of the Cell (© Garland Science 2009)

$$U(x)=(1/2)* k_{trap}*x^2 - F*x$$

Optical Trap Energy Assignment: Under what Conditions does This curve hold? $x_{eq} =$

Figure 5.13c Physical Biology of the Cell (© Garland Science 2009)

DNA Force Extension

Entropic Elasticity of λ-Phage DNA

DNA is unique among polymers both for its size, and for its long persistence length, $A \approx 50$ nm (1). Since A encompasses many base pairs, and thus to a large degree is averaged over sequence, a continuum elastic description of DNA bending is plausible. Recently, S. B. Smith et al. made a direct mechanical measurement of the force versus extension F(x) for a 97-kb λ -DNA dimer (2). Here we show that these experimental data may be precisely fit by the result of an appropriate elastic theory and thereby provide a quantitative baseline, departures from which will sig-

nal effects of more biological interest.

If the force is used as a Lagrange multiplier to fix the extension, the free energy of a stretched worm-like polymer corresponds to the quantum-mechanical ground state energy of a dipolar rotator with moment of inertia A, subject to an electric field F (3). Although the quality of the experimental data required us to supply a complete numerical solution, both the large- and small-force limits admit analytical asymptotic solutions that are summarized by the following interpolation formula:

$$FA/kT = \frac{1}{4}(1 - x/L)^{-2} - \frac{1}{4} + x/L$$

where k is Boltzmann's constant, T is temperature, and L is the molecular contour length. For large $F \gg kT/A$, the accessible conformations reduce to quadratic fluctuations around a straight line, while for $F \ll kT/A$ the polymer conformation becomes a directed random walk. The force needed to extend a freely jointed chain model diverges less strongly as $x \to L$ $[F \propto (1 - x/L)^{-1}]$ as fluctuations inside each segment are suppressed.

A nonlinear least-squares fit of the exact F(x) to experimental data (Fig. 1) gives $L = 32.80 \pm 0.10 \, \mu m$ and $A = 53.4 \pm 2.3 \, nm$ (90% confidence level errors; $\chi^2/n = 1.04$ for n = 303 data points). This L is close to the crystallographic value of 32.7 μm , while A is in good agreement with the results of cyclization studies (1). Refinements of the present technique may well become the most accu-

Experiment

RBC Shapes

Minimum-energy shapes calculated from model

Stomatocyte-Discocyte-Echinocyte sequence of human RBCs

Lim, Wortis, Mukhopadhya (2002) PNAS

Energy Model

$$F_{ADE}[S] = \frac{\kappa_b}{2} \oint_S d\mathcal{A} (2H - C_0)^2 + \frac{\bar{\kappa}}{2} \frac{\pi}{AD^2} (\Delta A - \Delta A_0)^2,$$
 [1]

D = membrane thickness

||A = membrane area

 $_{K_R}$, $_{K}$ = bending elastic moduli

S= surface of closed vescicle

H=local mean curvature

C₀=spontaneous curvature

<u>Area-difference elasticity model</u>

Helfrich (1973) Naturforsch., Lim, Wortis, Mukhopadhya (2002)

Figure 5.15 Physical Biology of the Cell (© Garland Science 2009)

Figure 5.16 Physical Biology of the Cell (© Garland Science 2009)

Figure 5.17 Physical Biology of the Cell (© Garland Science 2009)

Figure 5.17a Physical Biology of the Cell (© Garland Science 2009)

Figure 5.17b Physical Biology of the Cell (© Garland Science 2009)

Figure 5.18a Physical Biology of the Cell (© Garland Science 2009)

Figure 5.18b Physical Biology of the Cell (© Garland Science 2009)

Mechanical and Energy Equilibrium

2010-10-25

Potential Energy

$$U(x) = U(x_{eq} + \Delta x) \approx U(x_{eq}) + \frac{dU}{dx} \bigg|_{eq} \Delta x + \frac{1}{2} \frac{d^2 U}{dx^2} \bigg|_{eq} \Delta x^2$$

 Δx = excursion around the equilibrium point

Configurational Energy

Figure 5.19 Physical Biology of the Cell (© Garland Science 2009)

Since equilibrium demands the first derivative be zero,

$$U(x_{eq} + \Delta x) \approx U(x_{eq}) + \frac{1}{2} \frac{d^2 U}{dx^2} \bigg|_{eq} \Delta x^2$$

This is of the form $U(x) = kx^2$

Stretching of a Rod

Stress

Strain

Microscopic basis

Energy of Deformation

Strain energy

Integration of effect due to small springs

F-actin Stretching by Axial Force

Figure 5.22a Physical Biology of the Cell (© Garland Science 2009)

Lipid Membrane Thickness Change

Figure 5.22b Physical Biology of the Cell (© Garland Science 2009)

Free Energy

- Equilibrium configuration of systems in terms of mechanics
- Thermal fluctuations dictate equilibria
- Energy minimization
- Entropy maximization

Opposing tendencies. Need to understand entropy

Free Energy Minimization

Free energy = energy - temperature*entropy

entropy = measure of no. of different ways of organizing the system

Equilibrium state corresponds to the minimal free energy state of a system

Entropy

$$S = k_B * ln W$$

W = no. of microstates compatible with macrostate

k_B= Boltzmann constant

Protein Binding Sites on DNA

N = total no. of binding sites

Np = sites occupied by protein of interest

Energy of non-specific binding uniform

Possible Arrangement of Proteins on DNA

lattice model of DNA/protein complexes

Figure 5.23 Physical Biology of the Cell (© Garland Science 2009)

Entropy of DNA-Protein System

 $S = k_B \ln W(N_p; N)$

S = entropy

 $W(N_p;N) = No.$ of ways of re-arranging N_p proteins on N binding sites

Total no. of ways of laying down N_p proteins $Nx(N-1)x(N-2)x...(N-N_p+1)$

Independent of arrangement...

Thus

$$W(Np;N)=N^*(N-1)^*(N-2)...*(N-N_p+1)$$

$$N_p^*(N_p-1)...*1$$

Multiply and divide by $(N - N_P)!$

$$W(N;N_P) = \frac{N!}{N_P!(N-N_P)!}$$

Lac Repressor

- No. of proteins $(N_P) \sim 10$
- E. coli genome (no. of binding sites N) ~ 5x10⁶ bps
- $W \sim 3 \times 10^{60}$

Entropy

$$S = k_B \ln \frac{N!}{N_P!(N - N_P)!}$$

By Stirling approximation

$$\ln N! \approx N \ln N - N$$

$$S = -k_B N[c*ln c + (1-c)*ln(1-c)]$$

Where

$$c = N_p/N$$

Entropy of DNA Binding Proteins

Figure 5.24 Physical Biology of the Cell (© Garland Science 2009)

Hydrogen Bonding Network of Water

Tetrahedral Arrangement of Water

Coarse grained approximation

Figure 5.26 Physical Biology of the Cell (© Garland Science 2009)

Addition of Polar Element

If one vertex occupied by non-polar molecule,

3 configurations available

Entropy change:

$$\Delta S_{hydrophobic} = k_B \ln 3 - k_B \ln 6 = -k_B \ln 2$$

Free Energy Cost:

$$\Delta G_{hydrophobic}(n) = nk_B T \ln 2$$

Free Energy Cost

 γ = free enegy cost per unit area

A = effective area of interface between hydrophobic molecule and water

$$\Delta G_{hydrophobic} = \gamma A$$

Area/water-molecule

Area 10 water molecules $\sim 1 \text{ nm}^2$

$$\ln 2 = 0.7$$

$$\gamma = 7k_BT/nm^2$$

Oxygen
$$\gamma \sim 1k_BT$$

Octane $\gamma \sim 15k_BT$

Entropy Maximization

Isolated system

Constraints

If constraints removed, entropy maximal

$$S_{total} = S1(E1,V1,N1) + S2(E2,V2,N2)$$

Isolated System

Figure 5.27 Physical Biology of the Cell (© Garland Science 2009)

Examples

- Force-extension characteristics of DNA
- Depletion of forces between macromolecular assemblies
- Osmotic pressure

Figure 5.27a Physical Biology of the Cell (© Garland Science 2009)

sliding partition

semipermeable membrane

Figure 5.28 Physical Biology of the Cell (© Garland Science 2009)

g-actin (globular)

 α , β , γ isoforms

Monomer

375 a.a.

42 kDa

Intermediate Filament

Monomer

466 a.a. (vimentin)

57 kDa (usu. 40-70 kDa)

Keratin, Vimentin, Lamin, GFAP

Microtubule

End

L

25 nm

Monomer: α and β tubulin

451 a.a. 50 kDa

Stretching the Cytoskeleton

- Actin filamer (microfilame)
- Microtubules
- Intermediate filaments

Janmey et al. (1991) JCB

Stirling Approximation

Stirling approximation

$$ln N! = ln[N(N-1)(N-2)...x1]$$

But

$$ln(ab) = ln(a) + ln(b)$$

So,
$$\ln N! = \sum_{n=1}^{N} \ln n$$

$$\sum_{n=1}^{N} \ln n \approx \int_{n=1}^{N-1} (\ln x) dx = N \ln N - N$$

Taylor Expansion Series

Figure 5.20 Physical Biology of the Cell (© Garland Science 2009)