#### **Energy and Equilibrium**

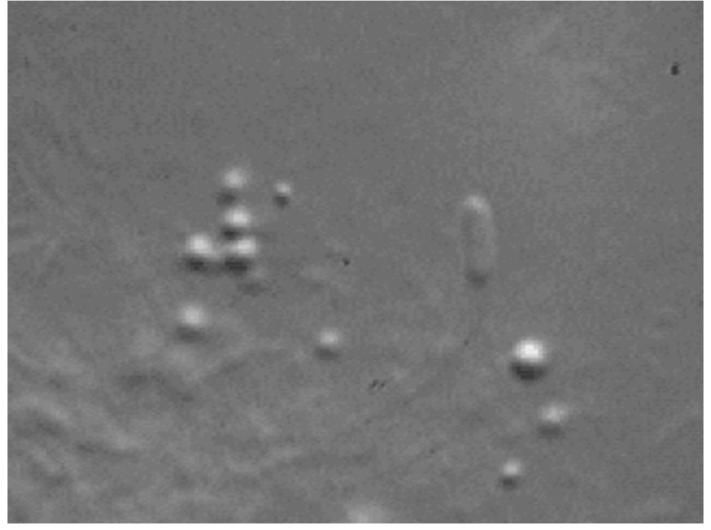
2010-10-18

http://www.iiserpune.ac.in/~cathale/lects/bio322-2010.html

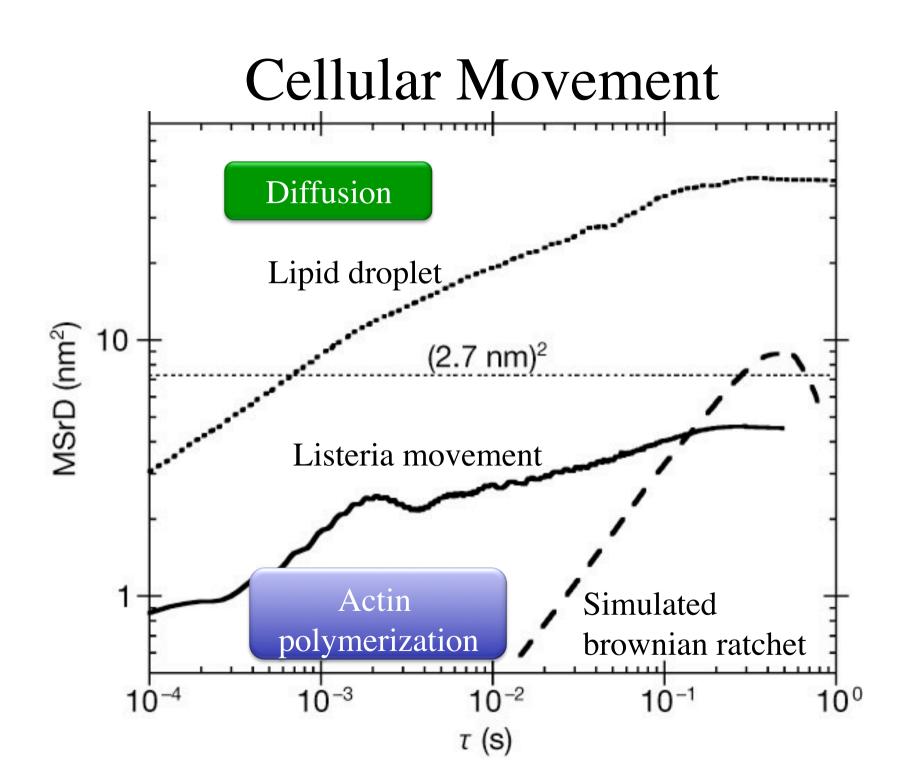
Diffusion and thermal energy

#### **ENERGY**

#### Listeria Inside a Cos7 Cell



Kuo, S.C., and McGrath, J. L. (2000) Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, p1026



#### Thermal Energy Scale

Time scales and feasibility of reactions determined by energies

Thermal energy available inside living systems

 $k_BT = 1.38x10^{-23} \text{ J/K } x 300 \text{ K} \approx 4.1x10^{-21} \text{ J}$ = ?? pN-nm

## Diffusion Times and Length Scales

For a diffusing particle inside a cell

$$t_{diffusion} \approx x^2/D$$

### Molecules Moving Inside Cells

Stokes-Einstein Relation

$$D=k_BT/f$$

f = stokes frictional force

=  $6\pi\eta r$  (spherical object)

Diffusion coefficient  $D (m/s^2)$ 

Dynamic viscosity η (Pa-s)

Radius of particle r (m)

A. Einstein "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik 17 pp. 549-560 (1905)

#### Getting Around a Cell

• How long could it take a single protein molecule to traverse the length of E. coli?

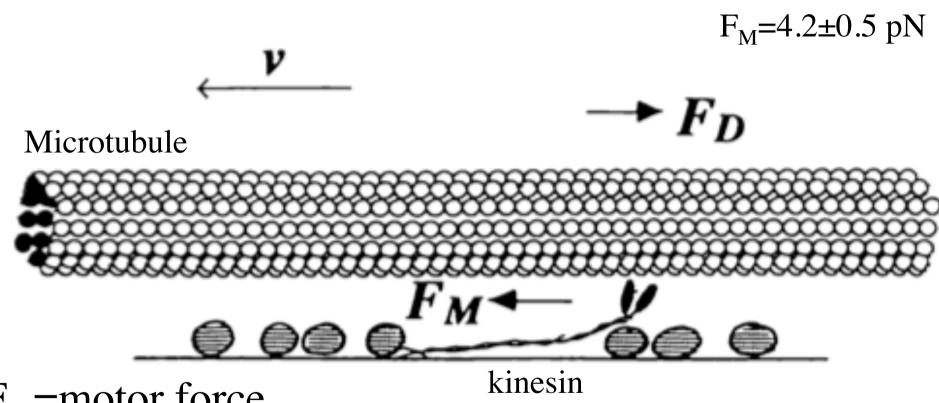
```
r = 2.5 \text{ nm}
\eta \approx 1x10^{-3} \text{ N-s/m}^2
D=?
L_{\text{E.coli}} \sim 1 \text{ } \mu\text{m}
t_{\text{e.coli}} = ?
```

• Squid giant axon length 10 cm. t=?

#### Molecular Motors

- Kinesin motor speed in cells  $\sim 1 \mu m/s$
- Measured effective speeds of protein in axon  $\sim 0.02 \ \mu \text{m/s}$
- Processive vs. Non-processive motion

## Estimating Force Exerted by Single Motors



F<sub>M</sub>=motor force

F<sub>D</sub>=viscous drag force

v=speed

Hunt et al. (1994) Biophys. J.

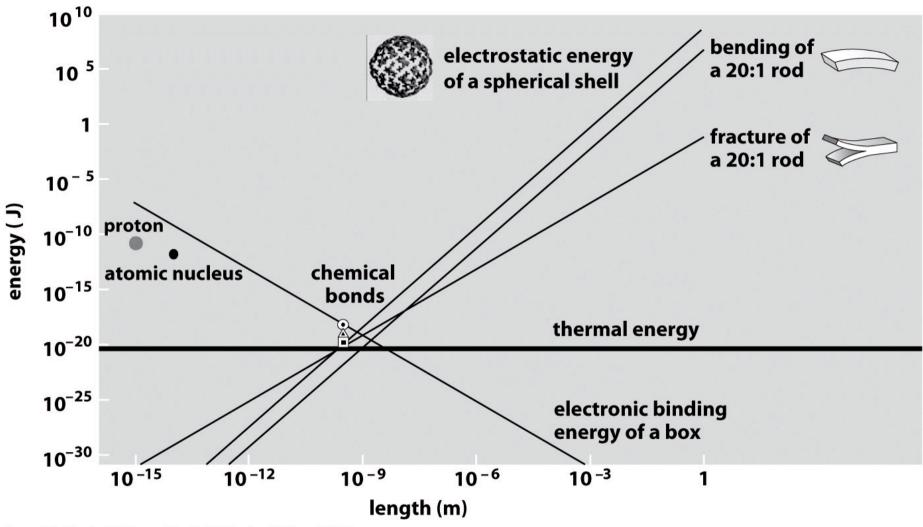


Figure 5.1 Physical Biology of the Cell (© Garland Science 2009)

#### Biological Minimzation

- Equilibrium
- Out-of-equilibrium
- Fast processes vs. slow processes

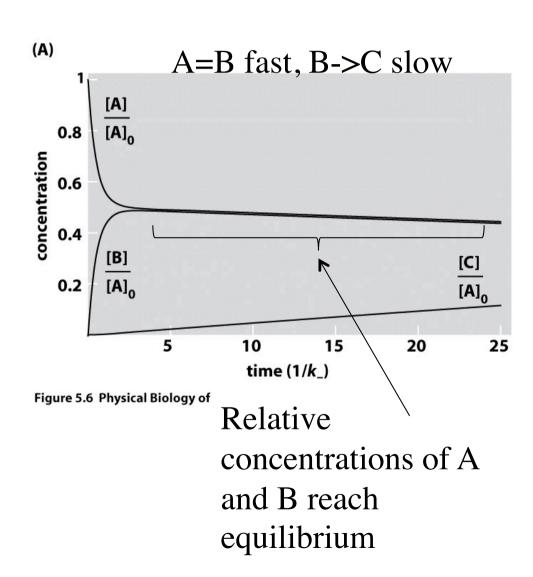
### Biochemical Equilibrium Assumptions

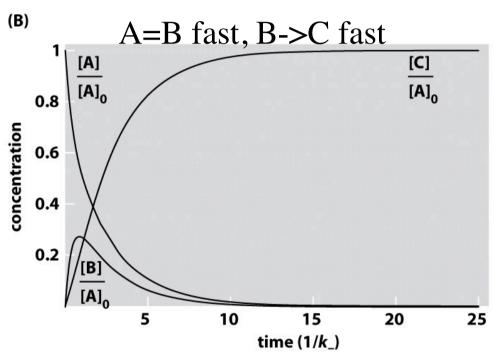
Enzyme Substrate interactions

$$A \xrightarrow{k+} B \xrightarrow{r} C$$

$$k-$$

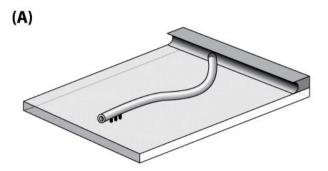
# Sub-processes and Approach to Equilibrium



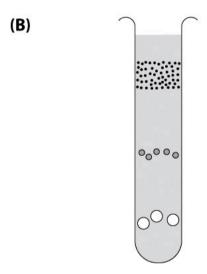


If conversion from B->C too rapid, equilibrium assumption not valid

#### **MECHANICAL EQUILIBRIUM**

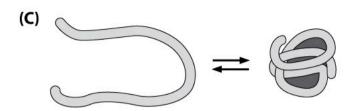


microtubule growing against a barrier

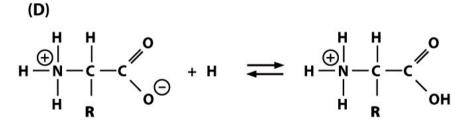


proteins partitioning in a density gradient

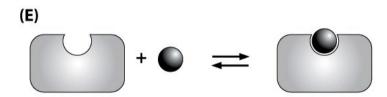
#### **CHEMICAL EQUILIBRIUM**



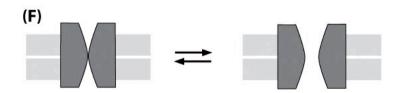
#### protein folding and unfolding



carboxylic acid group becoming protonated and deprotonated



ligand binding and unbinding to receptor



ion channel opening and closing

#### Figure 5.7 Physical Biology of the Cell (© Garland Science 2009)

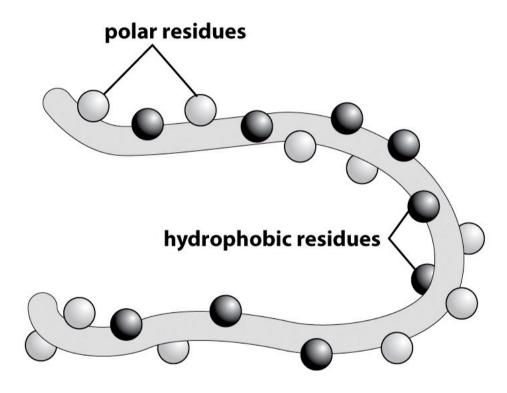
#### 2010-10-20

#### Diffusion Coefficient (D)

Derive random walk and diffusion coefficient and msd relation

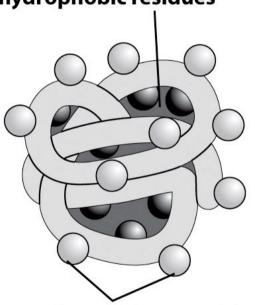
Derive expression for diffusion coefficient in stokes-einstein formulation

#### Protein Minimization



unfolded polypeptide

free energy lowered by sequestering hydrophobic residues



polar residues participate in hydrogen bond network

folded conformation in aqueous environment

2010-10-22

#### **ENERGY MINIMIZATION**

### Spring with Weight

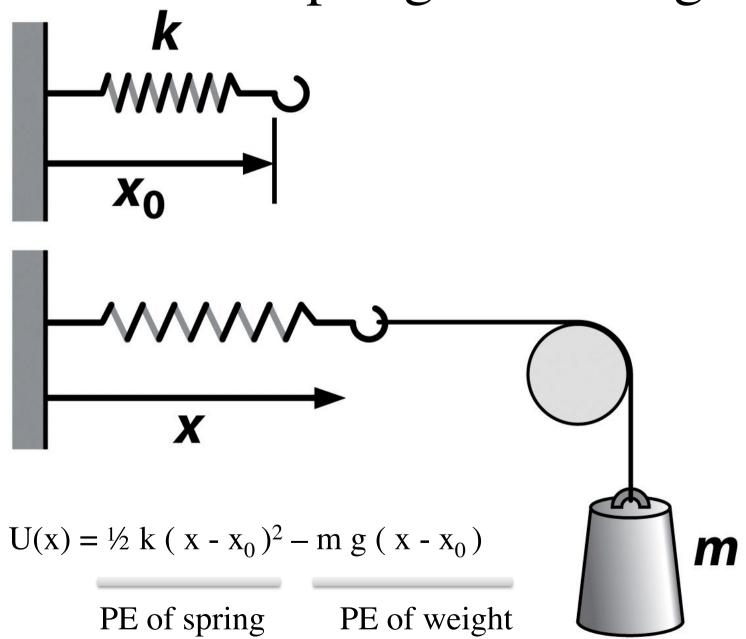
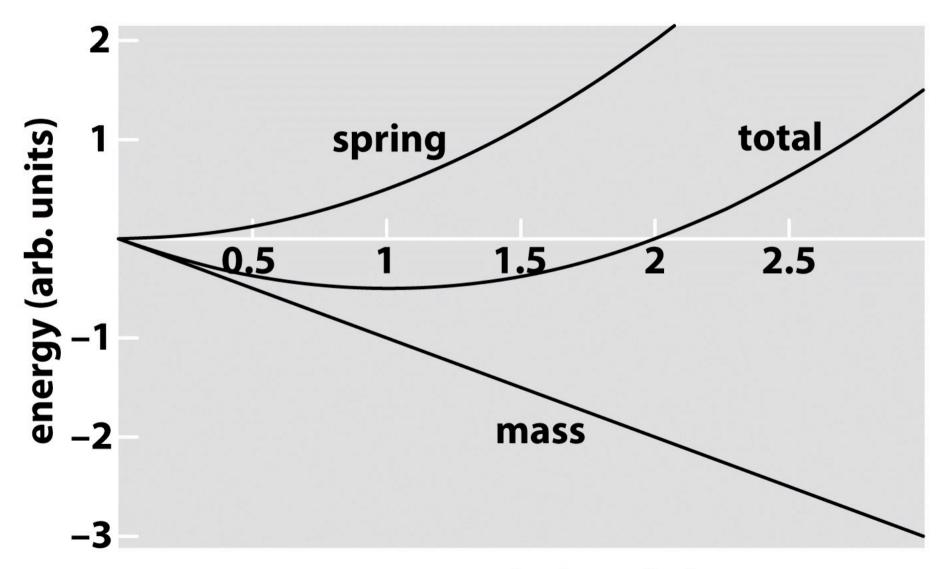


Figure 5.11a Physical Biology of the Cell (© Garland Science 2009)

#### Mechanical Equilibrium as Energy Minimization



 $x - x_0$  (arb. units)

### Equilibrium

$$dU/dx = k(x_{eq}-x_0)-mg = 0$$

$$x_{eq} =$$



## Springs Everywhere

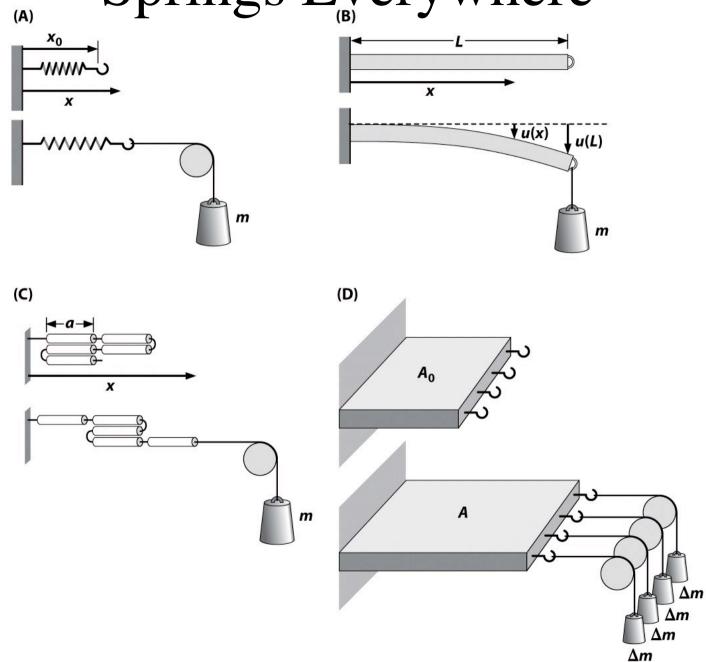
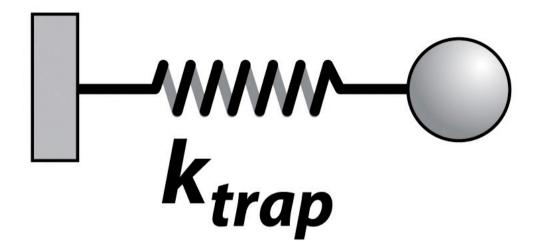


Figure 5.12 Physical Biology of the Cell (© Garland Science 2009)

## Optical Trap laser beam **DNA** tether optical bead

Figure 5.13a Physical Biology of the Cell (© Garland Science 2009)



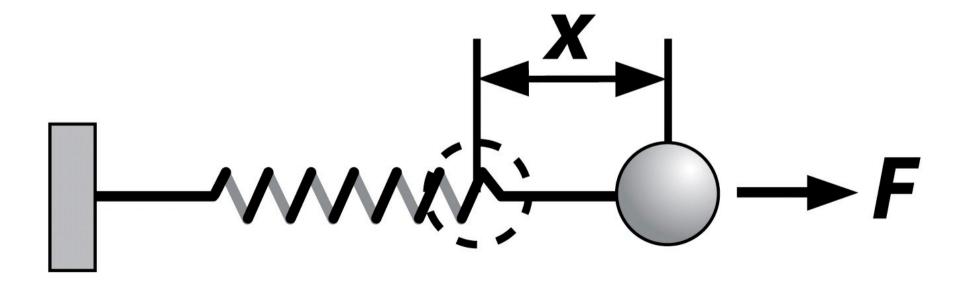


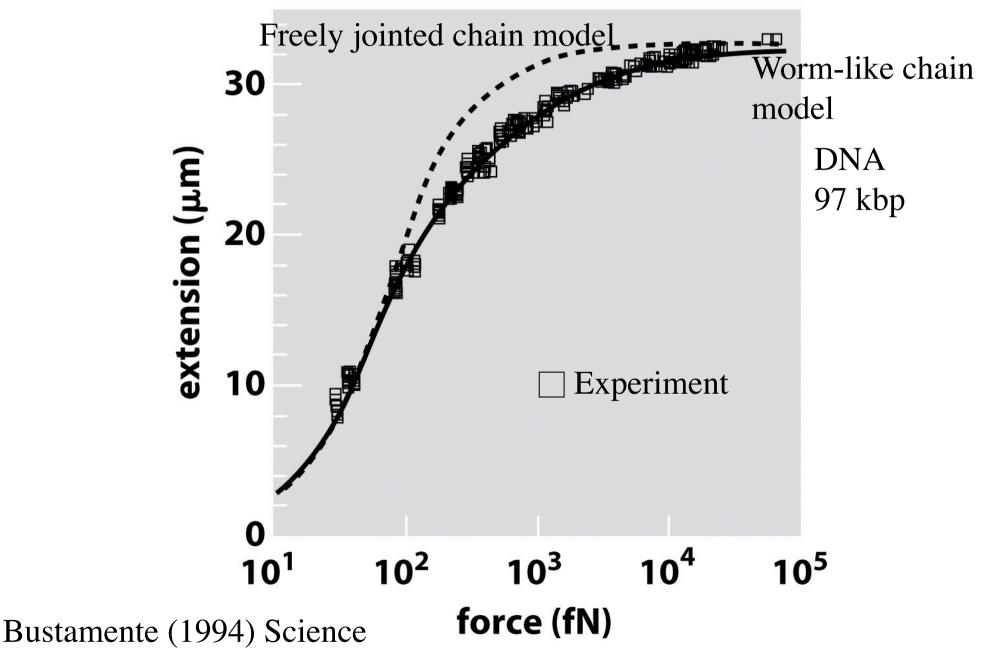
Figure 5.13b Physical Biology of the Cell (© Garland Science 2009)

$$U(x)=(1/2)* k_{trap}*x^2 - F*x$$

## Optical Trap Energy Assignment: Under what Conditions does This curve hold? $x_{eq} =$

Figure 5.13c Physical Biology of the Cell (© Garland Science 2009)

#### **DNA Force Extension**



#### Entropic Elasticity of λ-Phage DNA

**D**NA is unique among polymers both for its size, and for its long persistence length,  $A \approx 50$  nm (1). Since A encompasses many base pairs, and thus to a large degree is averaged over sequence, a continuum elastic description of DNA bending is plausible. Recently, S. B. Smith et al. made a direct mechanical measurement of the force versus extension F(x) for a 97-kb  $\lambda$ -DNA dimer (2). Here we show that these experimental data may be precisely fit by the result of an appropriate elastic theory and thereby provide a quantitative baseline, departures from which will sig-

nal effects of more biological interest.

If the force is used as a Lagrange multiplier to fix the extension, the free energy of a stretched worm-like polymer corresponds to the quantum-mechanical ground state energy of a dipolar rotator with moment of inertia A, subject to an electric field F (3). Although the quality of the experimental data required us to supply a complete numerical solution, both the large- and small-force limits admit analytical asymptotic solutions that are summarized by the following interpolation formula:

$$FA/kT = \frac{1}{4}(1 - x/L)^{-2} - \frac{1}{4} + x/L$$

where k is Boltzmann's constant, T is temperature, and L is the molecular contour length. For large  $F \gg kT/A$ , the accessible conformations reduce to quadratic fluctuations around a straight line, while for  $F \ll kT/A$  the polymer conformation becomes a directed random walk. The force needed to extend a freely jointed chain model diverges less strongly as  $x \to L$   $[F \propto (1 - x/L)^{-1}]$  as fluctuations inside each segment are suppressed.

A nonlinear least-squares fit of the exact F(x) to experimental data (Fig. 1) gives  $L = 32.80 \pm 0.10 \, \mu m$  and  $A = 53.4 \pm 2.3 \, nm$  (90% confidence level errors;  $\chi^2/n = 1.04$  for n = 303 data points). This L is close to the crystallographic value of 32.7  $\mu m$ , while A is in good agreement with the results of cyclization studies (1). Refinements of the present technique may well become the most accu-

Experiment

#### RBC Shapes

Minimum-energy shapes calculated from model

Stomatocyte-Discocyte-Echinocyte sequence of human RBCs

Lim, Wortis, Mukhopadhya (2002) PNAS

#### Energy Model

$$F_{ADE}[S] = \frac{\kappa_b}{2} \oint_S d\mathcal{A} (2H - C_0)^2 + \frac{\bar{\kappa}}{2} \frac{\pi}{AD^2} (\Delta A - \Delta A_0)^2,$$
 [1]

D = membrane thickness

||A = membrane area

 $_{K_R}$ ,  $_{K}$  = bending elastic moduli

S= surface of closed vescicle

H=local mean curvature

C<sub>0</sub>=spontaneous curvature

<u>Area-difference elasticity model</u>

Helfrich (1973) Naturforsch., Lim, Wortis, Mukhopadhya (2002)

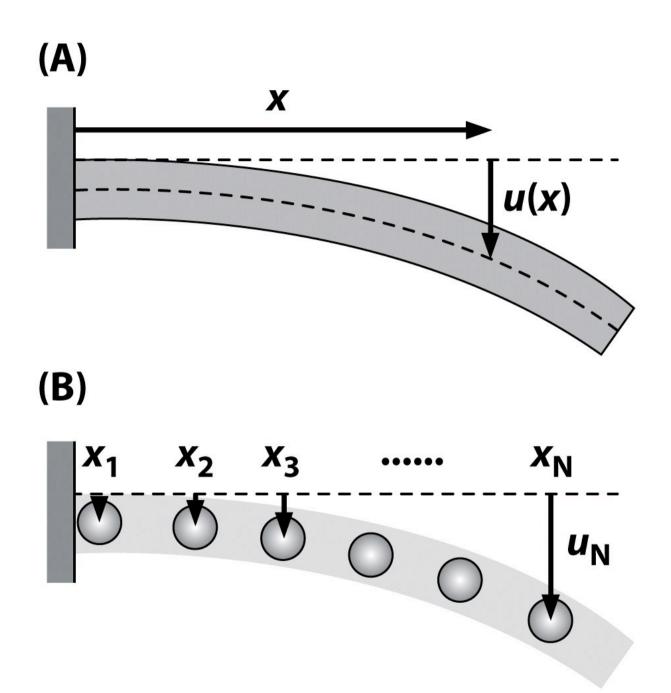


Figure 5.15 Physical Biology of the Cell (© Garland Science 2009)

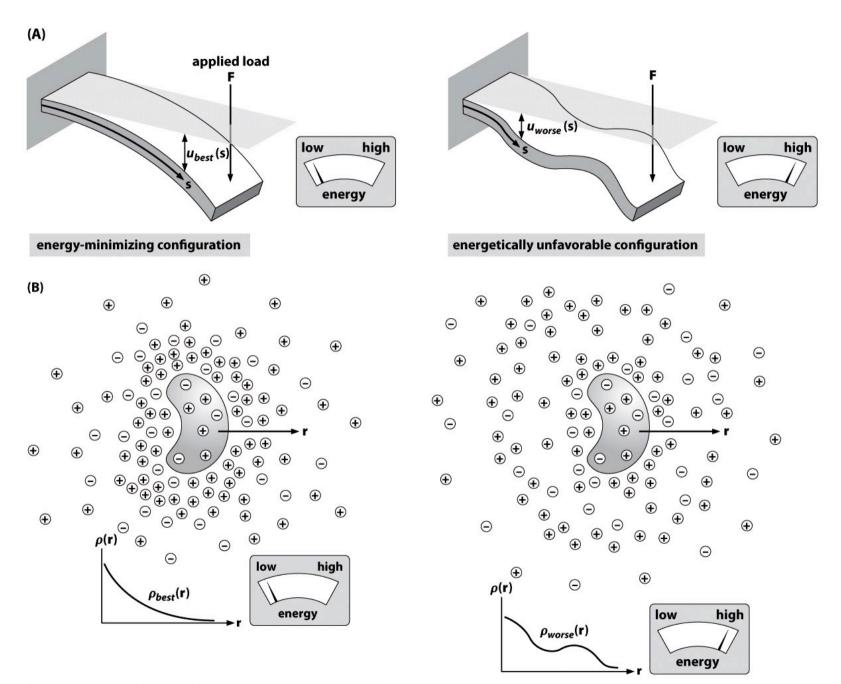


Figure 5.16 Physical Biology of the Cell (© Garland Science 2009)

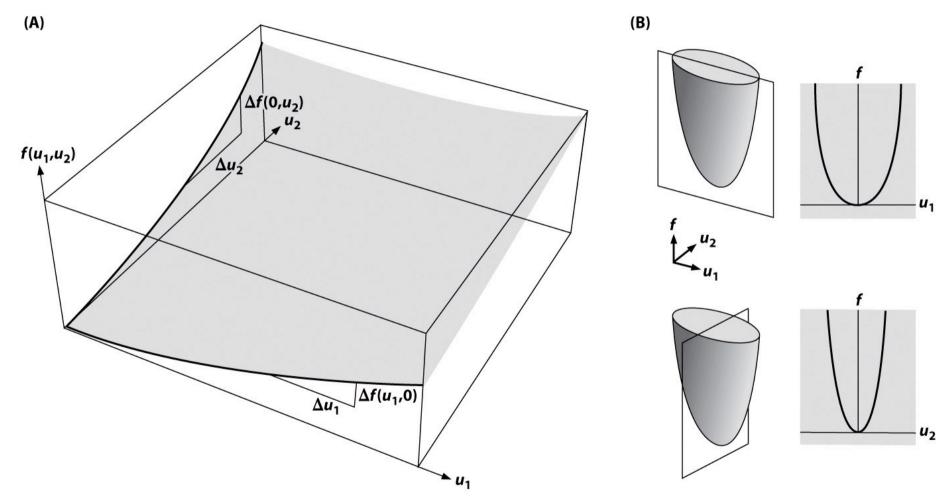


Figure 5.17 Physical Biology of the Cell (© Garland Science 2009)

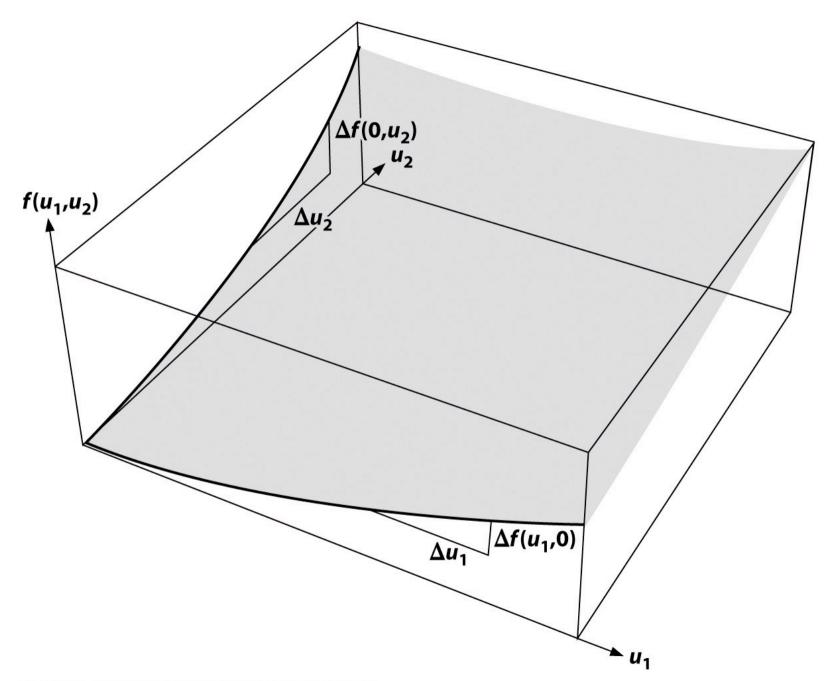


Figure 5.17a Physical Biology of the Cell (© Garland Science 2009)

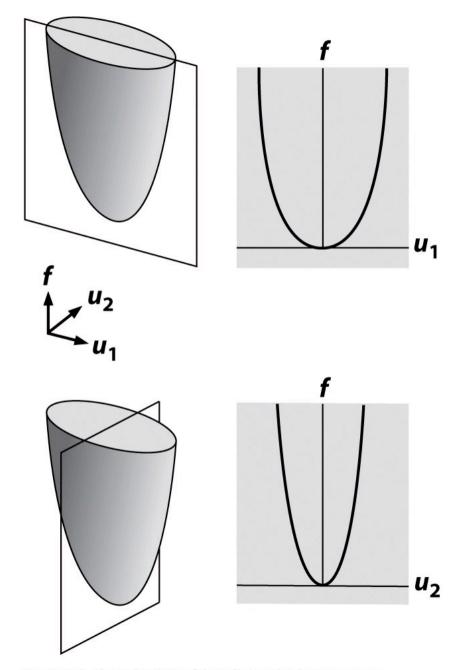
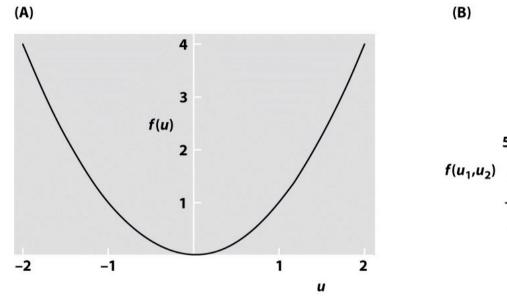
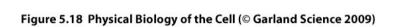
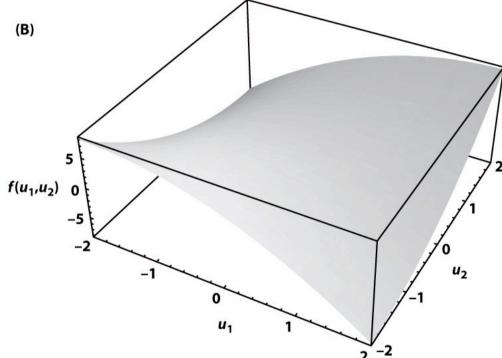


Figure 5.17b Physical Biology of the Cell (© Garland Science 2009)







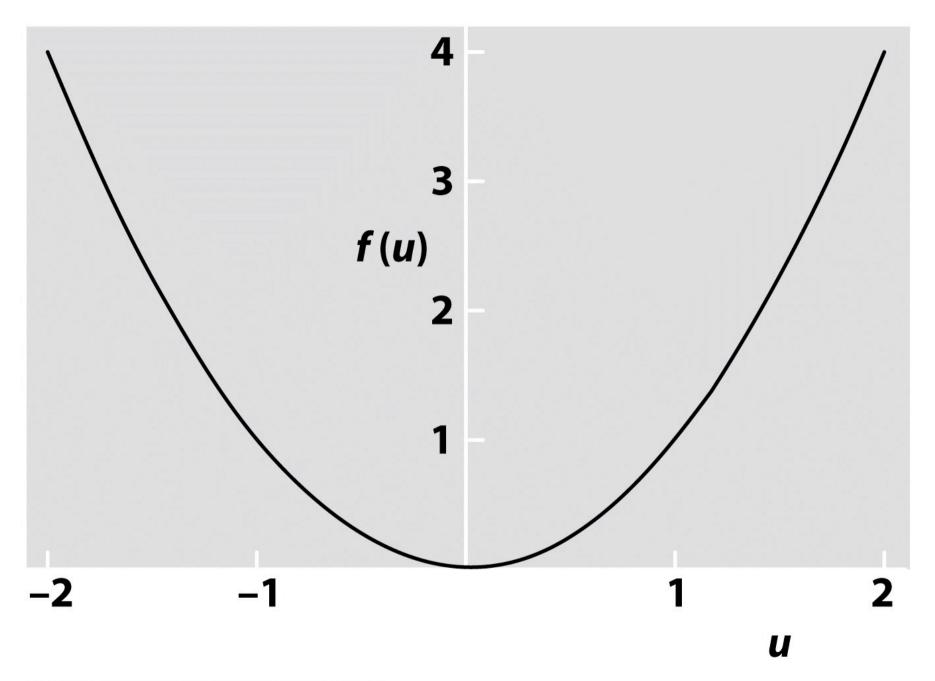


Figure 5.18a Physical Biology of the Cell (© Garland Science 2009)

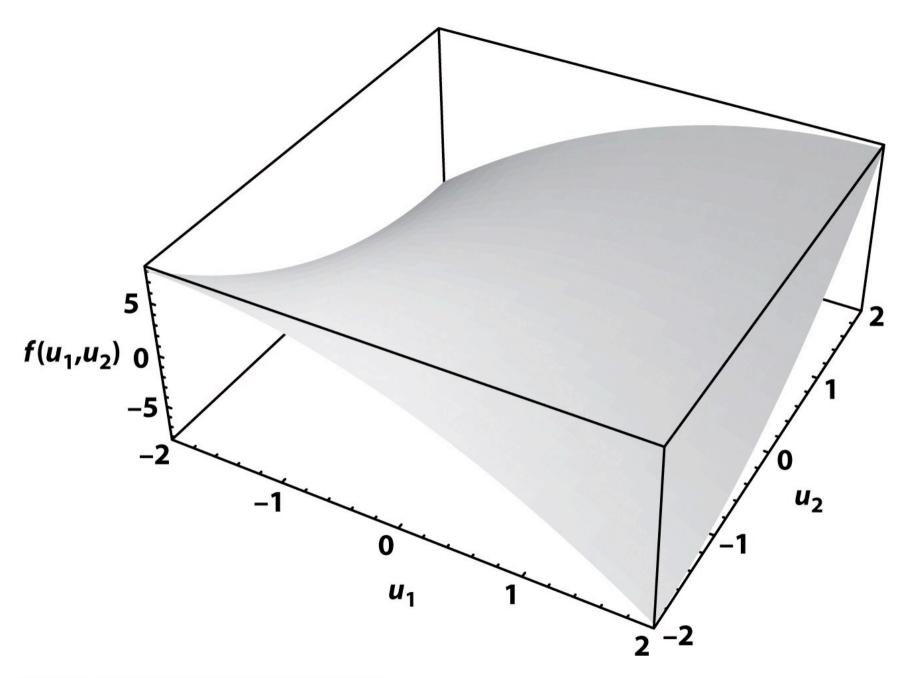


Figure 5.18b Physical Biology of the Cell (© Garland Science 2009)

Mechanical and Energy Equilibrium

2010-10-25

### Potential Energy

$$U(x) = U(x_{eq} + \Delta x) \approx U(x_{eq}) + \frac{dU}{dx} \bigg|_{eq} \Delta x + \frac{1}{2} \frac{d^2 U}{dx^2} \bigg|_{eq} \Delta x^2$$

 $\Delta x$  = excursion around the equilibrium point

### Configurational Energy

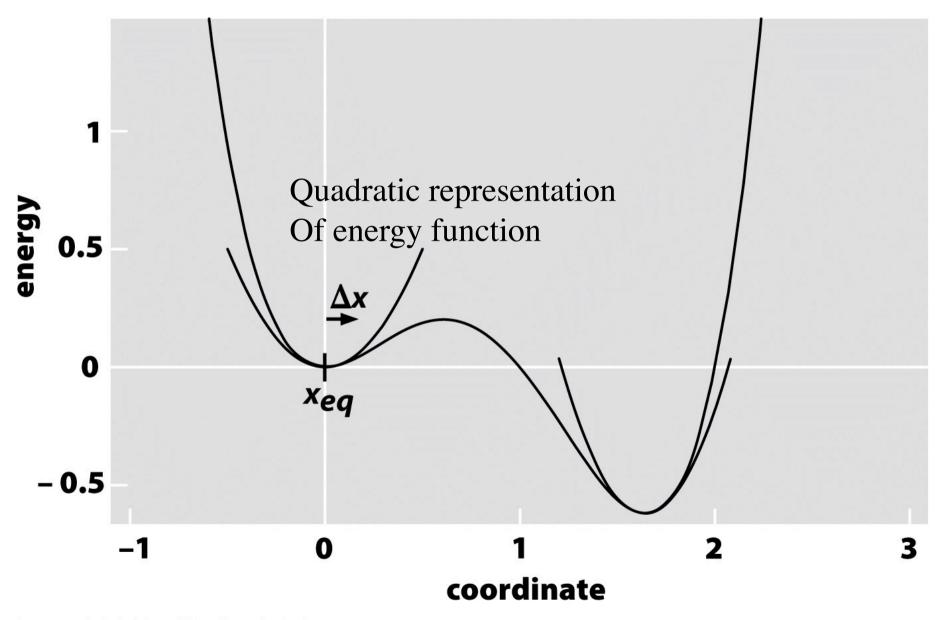


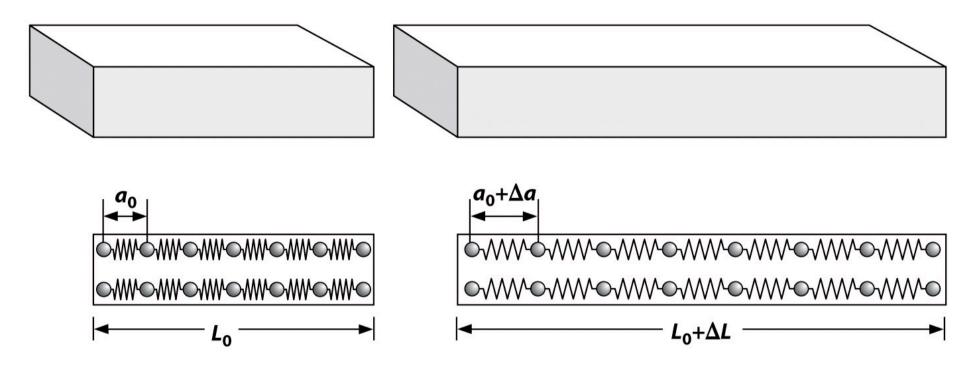
Figure 5.19 Physical Biology of the Cell (© Garland Science 2009)

Since equilibrium demands the first derivative be zero,

$$U(x_{eq} + \Delta x) \approx U(x_{eq}) + \frac{1}{2} \frac{d^2 U}{dx^2} \bigg|_{eq} \Delta x^2$$

This is of the form  $U(x) = kx^2$ 

### Stretching of a Rod



Stress

Strain

Microscopic basis

### Energy of Deformation

Strain energy

Integration of effect due to small springs

### F-actin Stretching by Axial Force

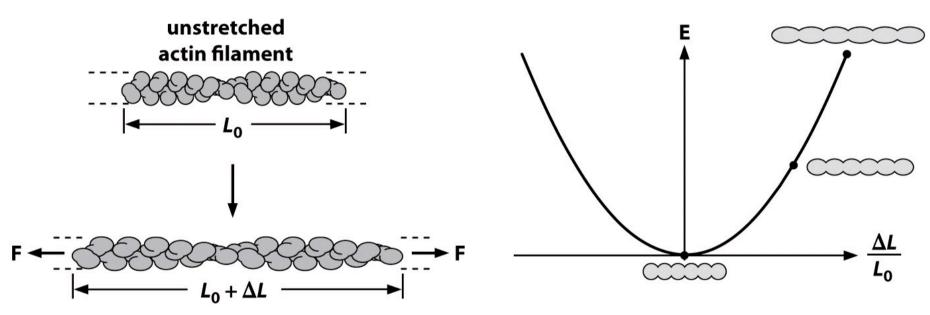


Figure 5.22a Physical Biology of the Cell (© Garland Science 2009)

# Lipid Membrane Thickness Change

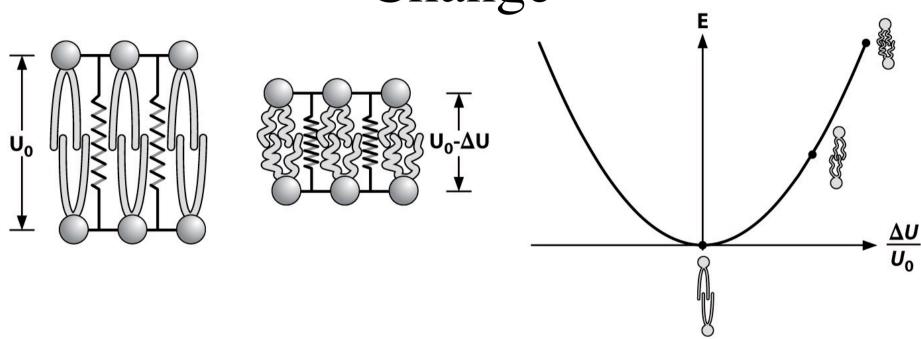


Figure 5.22b Physical Biology of the Cell (© Garland Science 2009)

### Free Energy

- Equilibrium configuration of systems in terms of mechanics
- Thermal fluctuations dictate equilibria
- Energy minimization
- Entropy maximization

Opposing tendencies. Need to understand entropy

### Free Energy Minimization

Free energy = energy - temperature\*entropy

entropy = measure of no. of different ways of organizing the system

Equilibrium state corresponds to the minimal free energy state of a system

### Entropy

$$S = k_B * ln W$$

W = no. of microstates compatible with macrostate

**k**<sub>B</sub>= Boltzmann constant

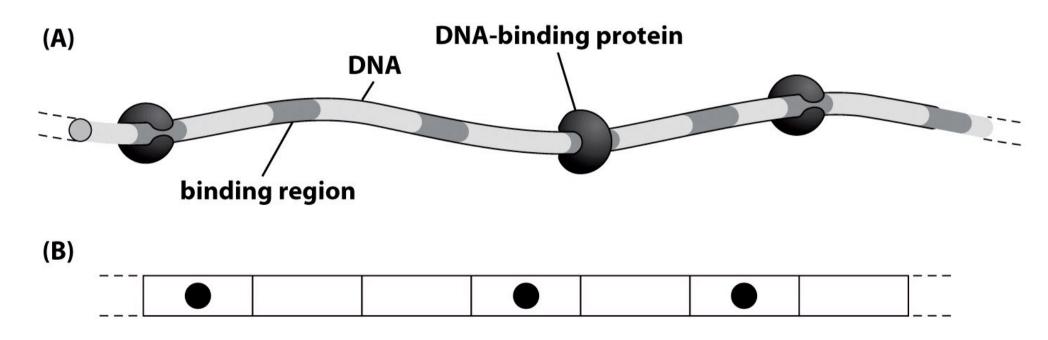
### Protein Binding Sites on DNA

N = total no. of binding sites

Np = sites occupied by protein of interest

Energy of non-specific binding uniform

# Possible Arrangement of Proteins on DNA



lattice model of DNA/protein complexes

Figure 5.23 Physical Biology of the Cell (© Garland Science 2009)

### Entropy of DNA-Protein System

 $S = k_B \ln W(N_p; N)$ 

S = entropy

 $W(N_p;N) = No.$  of ways of re-arranging  $N_p$  proteins on N binding sites

Total no. of ways of laying down  $N_p$  proteins  $Nx(N-1)x(N-2)x...(N-N_p+1)$ 

Independent of arrangement...

Thus

$$W(Np;N)=N^*(N-1)^*(N-2)...*(N-N_p+1)$$

$$N_p^*(N_p-1)...*1$$

Multiply and divide by  $(N - N_P)!$ 

$$W(N;N_P) = \frac{N!}{N_P!(N-N_P)!}$$

### Lac Repressor

- No. of proteins  $(N_P) \sim 10$
- E. coli genome (no. of binding sites N) ~ 5x10<sup>6</sup> bps
- $W \sim 3 \times 10^{60}$

### Entropy

$$S = k_B \ln \frac{N!}{N_P!(N - N_P)!}$$

By Stirling approximation

$$\ln N! \approx N \ln N - N$$

$$S = -k_B N[c*ln c + (1-c)*ln(1-c)]$$

Where

$$c = N_p/N$$

# Entropy of DNA Binding Proteins

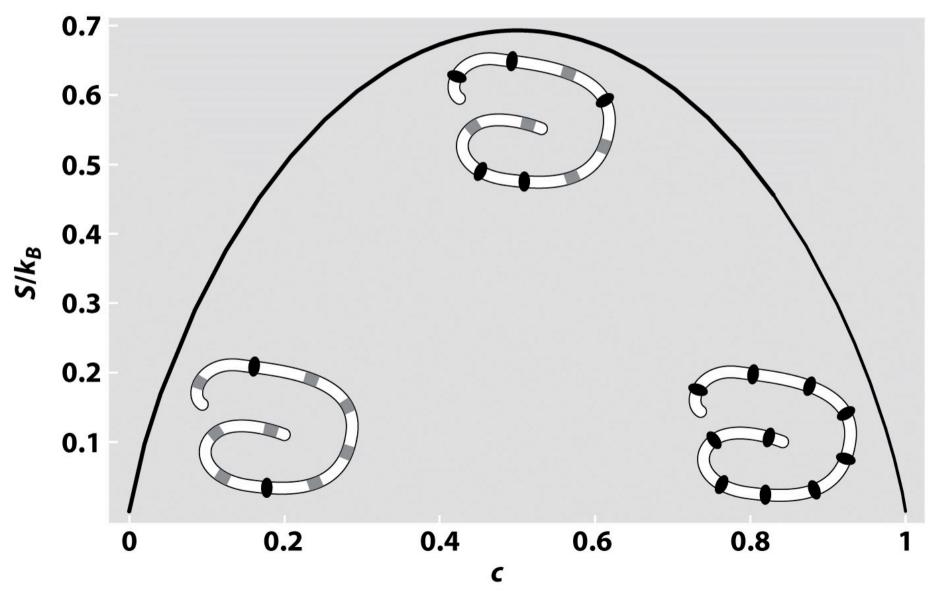
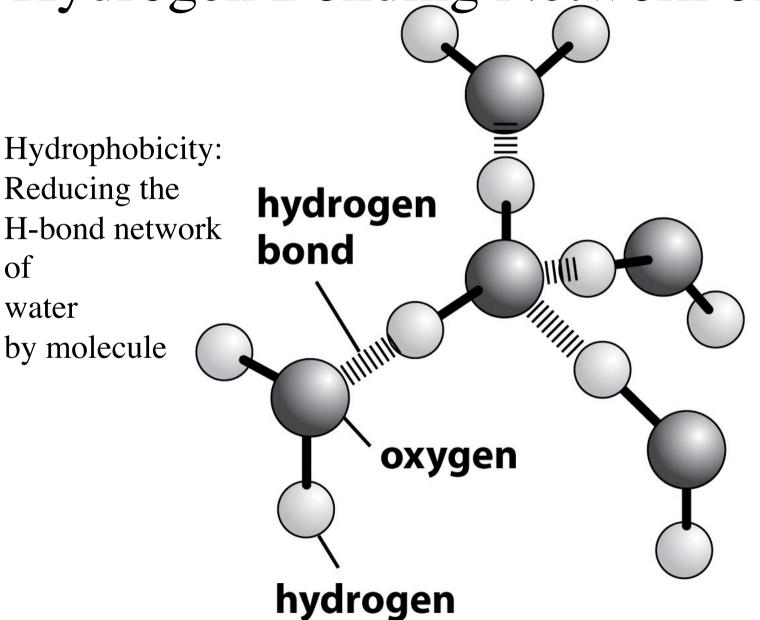


Figure 5.24 Physical Biology of the Cell (© Garland Science 2009)

Hydrogen Bonding Network of Water



# Tetrahedral Arrangement of Water

Coarse grained approximation

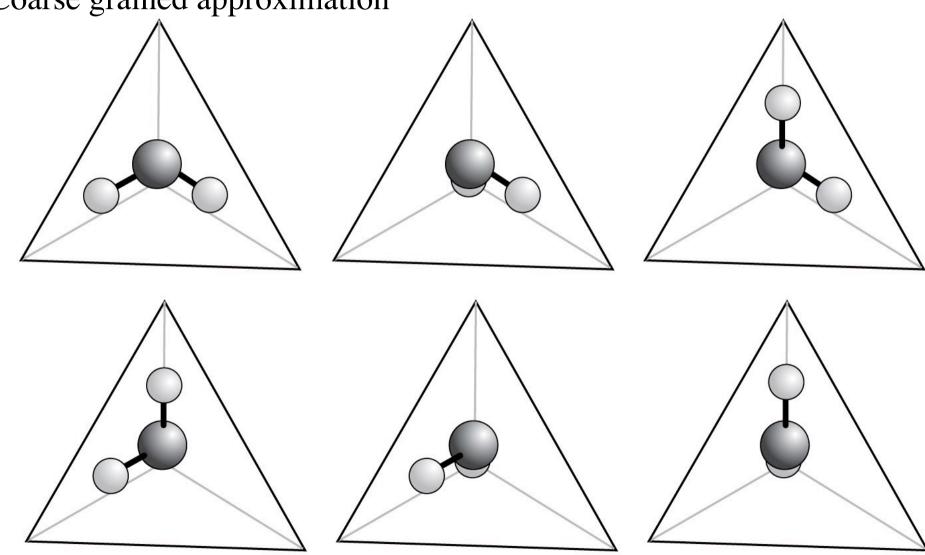


Figure 5.26 Physical Biology of the Cell (© Garland Science 2009)

#### Addition of Polar Element

If one vertex occupied by non-polar molecule,

3 configurations available

Entropy change:

$$\Delta S_{hydrophobic} = k_B \ln 3 - k_B \ln 6 = -k_B \ln 2$$

Free Energy Cost:

$$\Delta G_{hydrophobic}(n) = nk_B T \ln 2$$

### Free Energy Cost

 $\gamma$  = free enegy cost per unit area

A = effective area of interface between hydrophobic molecule and water

$$\Delta G_{hydrophobic} = \gamma A$$

Area/water-molecule

Area 10 water molecules  $\sim 1 \text{ nm}^2$ 

$$\ln 2 = 0.7$$

$$\gamma = 7k_BT/nm^2$$

Oxygen 
$$\gamma \sim 1k_BT$$
  
Octane  $\gamma \sim 15k_BT$ 

### **Entropy Maximization**

Isolated system

**Constraints** 

If constraints removed, entropy maximal

$$S_{total} = S1(E1,V1,N1) + S2(E2,V2,N2)$$

# Isolated System

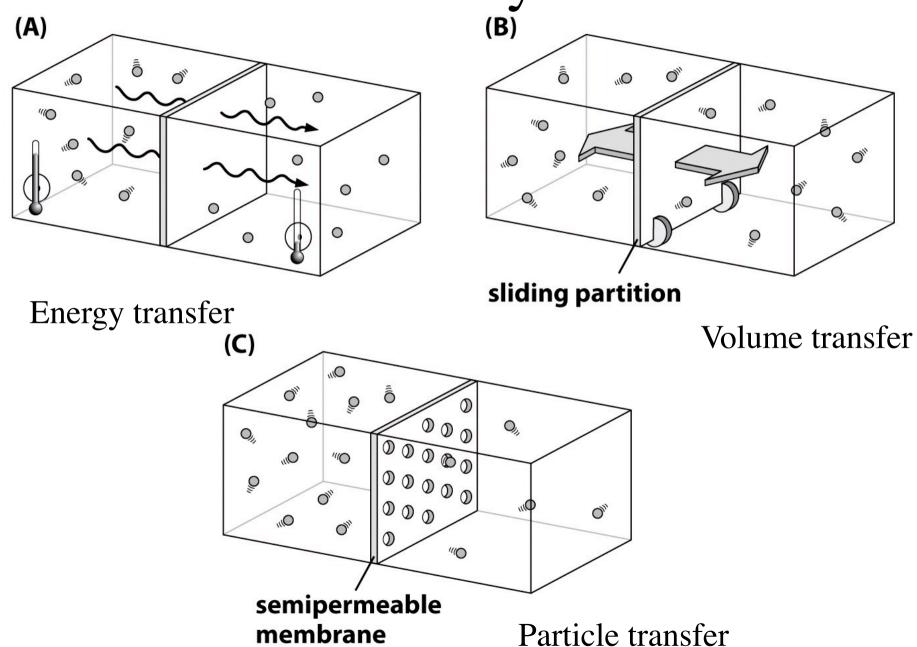


Figure 5.27 Physical Biology of the Cell (© Garland Science 2009)

### Examples

- Force-extension characteristics of DNA
- Depletion of forces between macromolecular assemblies
- Osmotic pressure

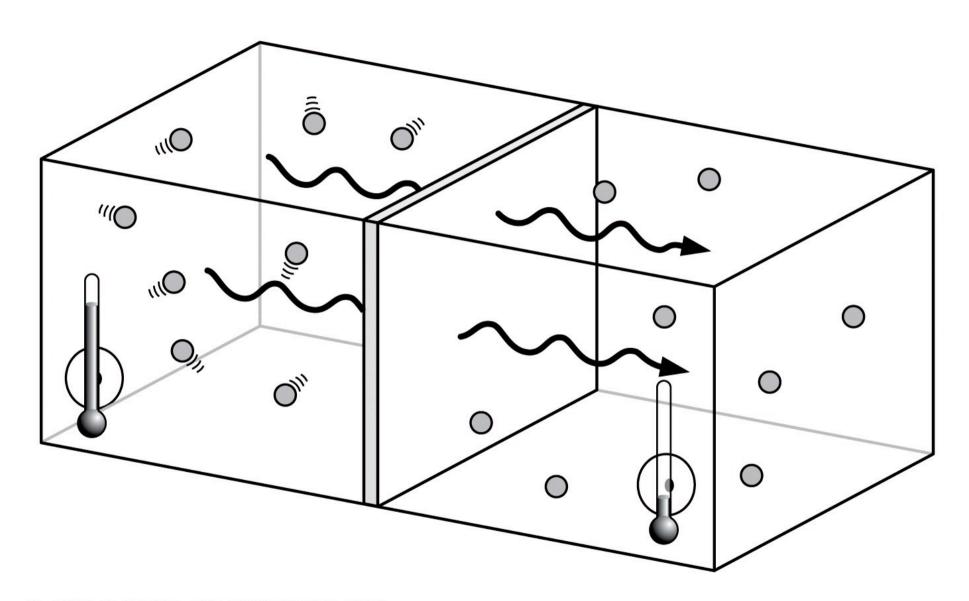
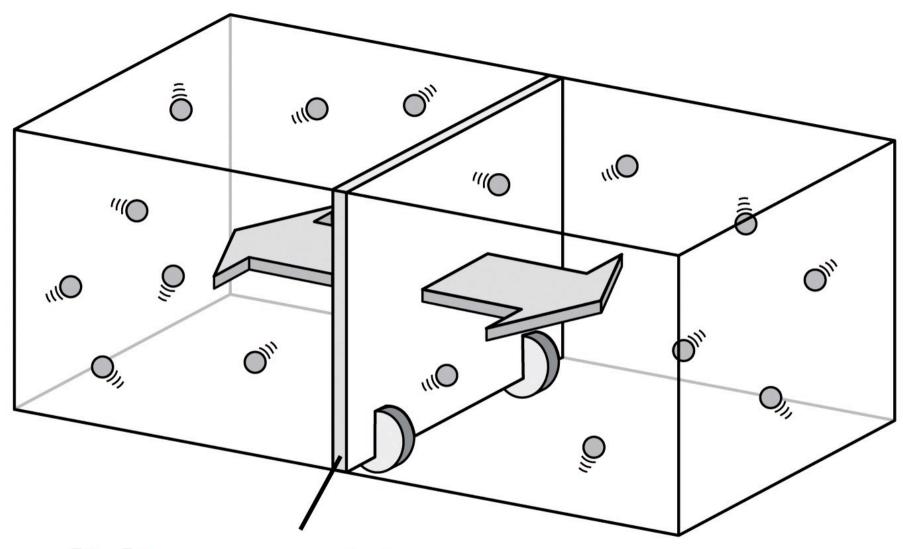
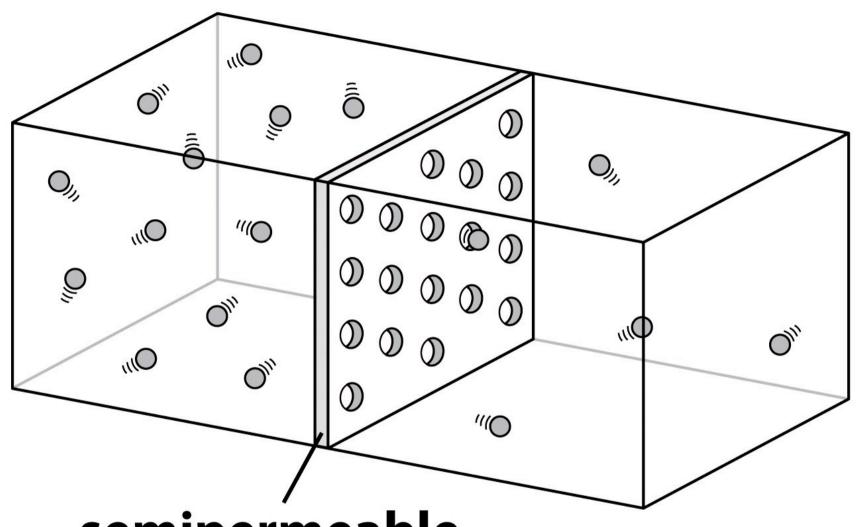


Figure 5.27a Physical Biology of the Cell (© Garland Science 2009)



sliding partition



semipermeable membrane

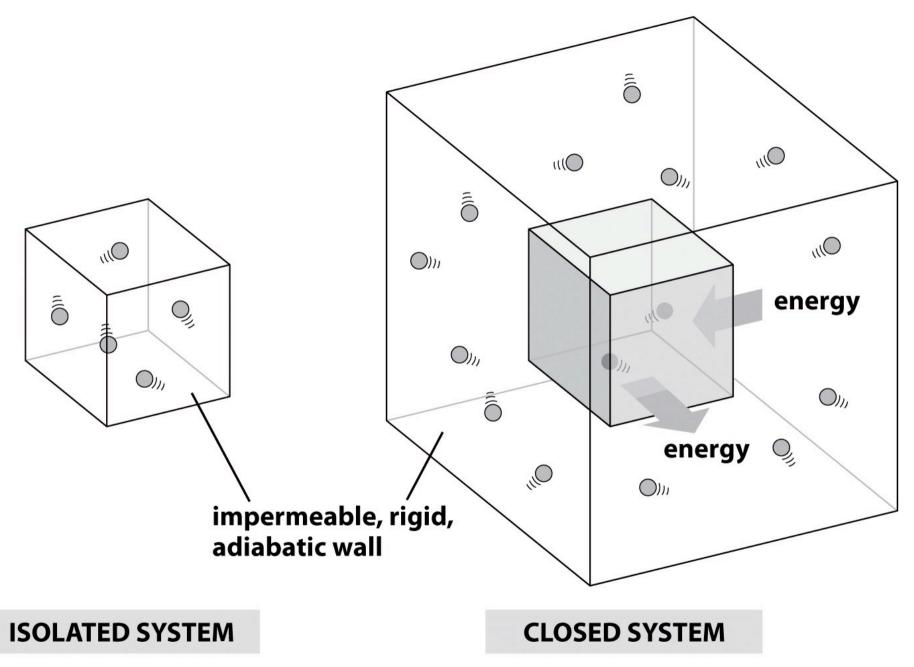
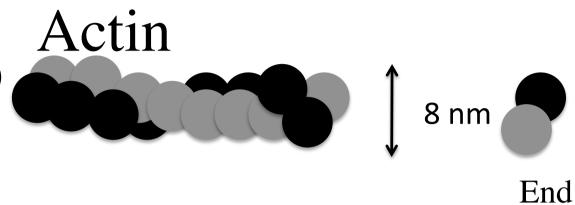


Figure 5.28 Physical Biology of the Cell (© Garland Science 2009)





g-actin (globular)

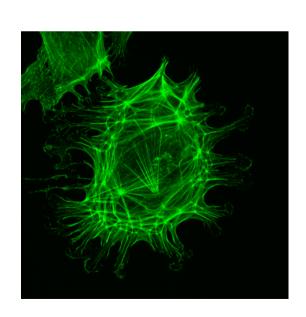


 $\alpha$ ,  $\beta$ ,  $\gamma$  isoforms

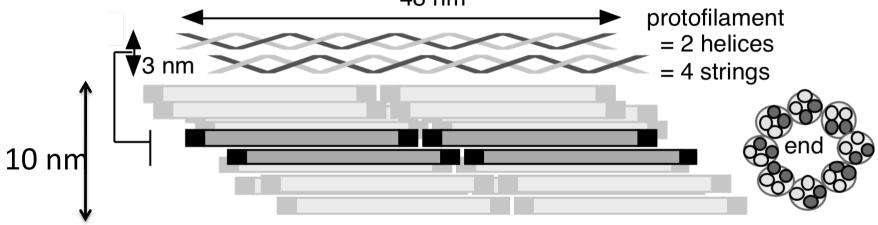
Monomer

375 a.a.

42 kDa



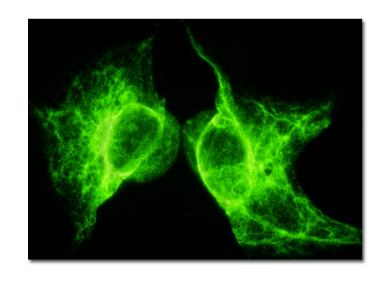
# Intermediate Filament



#### Monomer

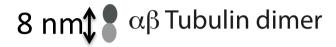
466 a.a. (vimentin)

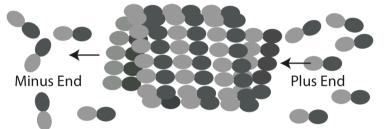
57 kDa (usu. 40-70 kDa)



Keratin, Vimentin, Lamin, GFAP

#### Microtubule





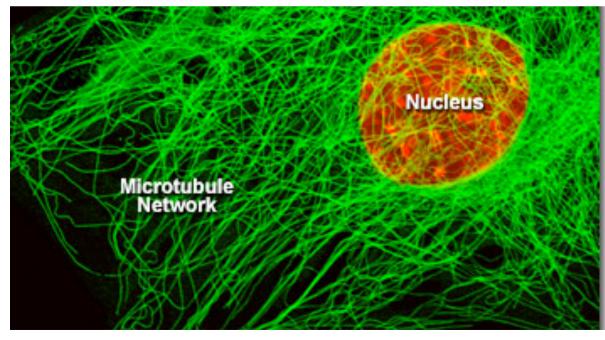
End

**L** 

25 nm

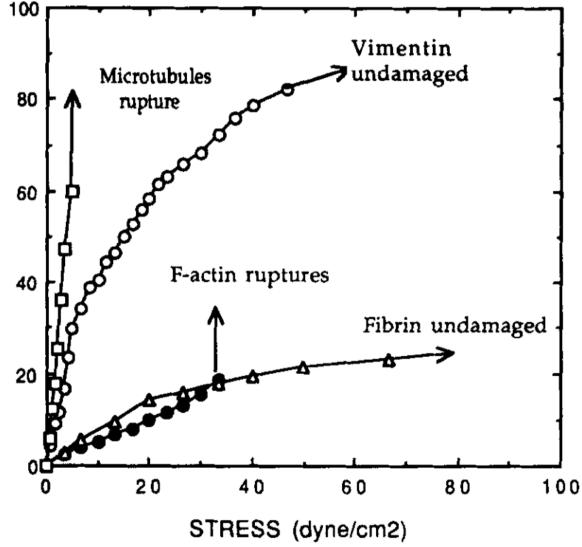
Monomer:  $\alpha$  and  $\beta$  tubulin

451 a.a. 50 kDa



#### Stretching the Cytoskeleton

- Actin filamer (microfilame)
- Microtubules
- Intermediate filaments



Janmey et al. (1991) JCB

### Stirling Approximation

Stirling approximation

$$ln N! = ln[N(N-1)(N-2)...x1]$$

But

$$ln(ab) = ln(a) + ln(b)$$

So, 
$$\ln N! = \sum_{n=1}^{N} \ln n$$

$$\sum_{n=1}^{N} \ln n \approx \int_{n=1}^{N-1} (\ln x) dx = N \ln N - N$$

### Taylor Expansion Series

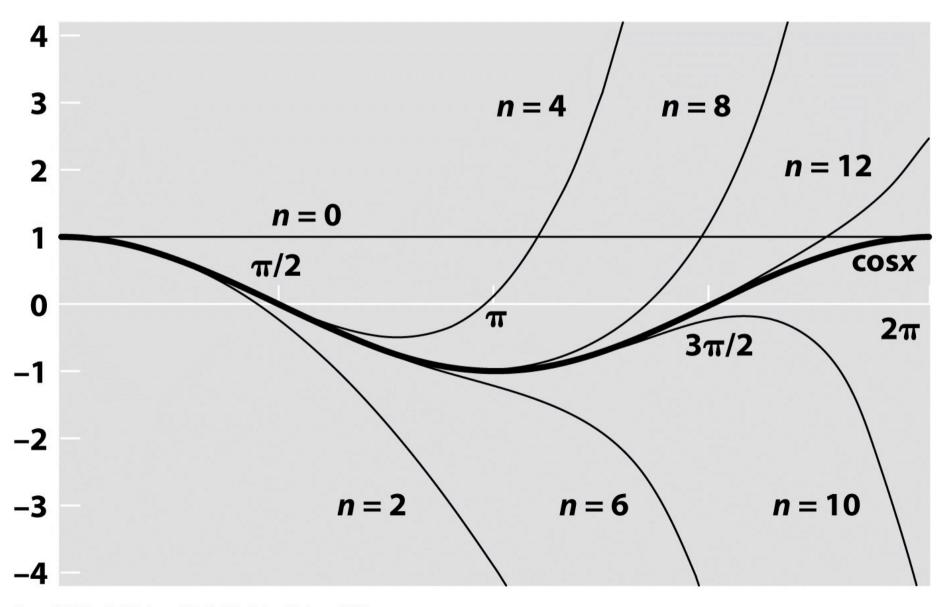


Figure 5.20 Physical Biology of the Cell (© Garland Science 2009)