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(A) Left—right asymmetric arrangements of internal organs in the human body.
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Kartagener’s Syndrome

* 50% left, 50% right heart
* Bronchiectasis (breathing diff culty)
* Male sterility

* Gene expression asymmetry driven by f ow
* Flow driven by Kif3B (kinesin superfamily)

Kartagener (1933), Nonaka (1998), Hirokawa (2009)



Body AXIS

* Nodal Flowsdetermine 5
left-right asymmetry Yolk sac cavity
Nonaka (1998),
Nonaka (2005),

Guirao (2010)
Mammals
* DV-axishy
Implatantion
* AP-axis perpendicular
* Left-Right last axisto
be determined




Blood Flow

Two day Adult

http://www.cas.vanderbilt.edu/bi oimages/animal s/danrer/zf sh-devel.htm



Blood Flow




Cytoplasmic Streaming
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Slow cytoplasmic streaming in a Drosophila oocyte. Endosome seen in a 8 second time-lapse movie represents 30 minutes of
real time. Scale bar: 25 mm.
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Serbus et & (2005)



Molecular Description of Water




Velocity Field Formalism




Fuid Viscosity M easurement

moving plate

n = viscosity of f uid
A=area of plate

v = velocity

d = distance between plates

fixed plate



Acceleration of Small Fluid
Parcel
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Forces Acting on Fluid Element
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orces

* Pressure Forces (F,)
* VIscous stress forces



Incompressible Flow- Newtonian Fluid
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Newtonian Fluids

Ama = 0F, +0F,
The Navier-Stokes Equation

0v l 2
St +(v-V)v= —p‘?;quuV v



Navier-Stokes Equation

Kinematic viscosity

T | =3

The Navier-Stokes Equation

1. Non-linear an intractable for complex flows

2. Newtonian flu'd model

3. Special cases (low-reynolds numbers) where acceleration ignored



Blood Circulation

* Blood vessel sizes. 1 cmto 2 um
* RBCs. 5 um (human)



Fluid Dynamics of Pipe Flow

viscous
(A) (B) force

o,

pressure

Flow through apipe of diameter dand  ~inrical f uid element
Length L

Viscous forces balanced

by

Velocity prof |le varies along radius pressure forces



Velocity of Flow

Pressure and viscous forces balanced
Derive Fp and Fv in z-direction

Get expression for v(r) velocity
Volumef ux rate



* What isthe expression for maximal
velocity?



Speed of Blood

Different animal capillaries
d=5 um
Ap 20mmHg 3000 Pa
Length of capillary| 1cm
Avg. f ow velocity?

n=">2



Hagen-Polsuelle’s Equation

Q= volumetric f ow rate (dV/dt)

= pressure difference across the pipe
d= diameter of the pipe

= kinematic viscosity
| = length of the vessel

T Apd*
Q=
128n]




Hemodynamics

Brirla
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VESSEL TYPE DIAMETER (mm) FUNCTION

Aorta 25 Pulse dampening and
distribution

Large Arteries 1.0-4.0




Distribution of Pressure

Vascular Pressures

Pressure vs

vessel
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Flow and Resistivity

* Ohm’'slaw V=IR, V=potential difference,
|=current, R=resistance

* D'arcy’slaw AP=0R (for low reynold’s
numbers) where AP is the pressure
difference. O isf ow rate and R isresistivity

Q=volume discharge over time (m°/s)
k=permeability (m?)

A=area (m?)

n= viscosity (Pa-s)

P, — P, = pressure drop (Pa)




L eukocyte Invasion into a Tissue

(B)

white blood cell
endothelial cell  in capillary
L eukocytes:
Q
Flow =
EXPOSURE TO MEDIATORS . )
OF INFLAMMATION RELEASED ey,
I nf eCtI on FROM DAMAGED TISSUE L
1 p.,ma
(C) —
Adhesiveforces |
Rolling CHEMOTAXIS TOWARD
ATTRACTANTS RELEASED
FROM DAMAGED TISSUE
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The 100-year fExperi m@'nt

* 1927 Australia
* Flow under gravity
* 8drops

Edgeworth, Dalton, Parnell (1927) The Pitch
Drop Experiment
http://www.physics.uqg.edu.au/physics museum/p
itchdrop.shtml




Stoke’ s Formulafor Drag Force on a
Sphere

Re <10 Re10-40

laminar flow vortices form and
are maintained

Figure 12,10 Physical Biology of the Cell [£ Garland Science 2009

)

S50,
Q.-

Re 40 - 20,000

vortices form and are
periodically shed

:

Flow types away from the wall at constant velocity v
Fundamental solution for spherein af ow-

Solve Stokes Equation



Stokes Drag

* Cylinder
* Arbitrary shapes
* Movement of Bacteriain Re<<



Stokes Drag in Single Molecule
Experiments

actin filament
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Viscous Forces I n Optical Tweezer
Experiments

* Bead diameter
~500 nm

* Motor speed 1

fdrag e—s .
micron/s

motor domains ADP
(ATPasel



Vesicle Transport

=0s)7 4 t=2s

o Number of Segments
4 5
t(s)

Motion enhanced differential interference contrast
(MEDIC) movies of living NT2 (neuron-committed
teratocarcinoma) velocity (v), radius (a), and
effective cytoplasmic viscosity ( ')



Time Scales of Movement

2
* Viscoustimescale T, — O d /T]
* Inertia ti a —
nertial time scale Ti—Cl/T/l

* u=velocity, a=characteristic length
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Viscosit

= dynamic viscosity (Pa-s klls/mz) absolute
Vviscosity

1 Poise = 0.1 Pa-s
For water n = from 0.1 to 0.01 Pa-s
At 293K, =1 mPa-s= 1x103 Pa-s
At 300K, n=0.798 mPa-s = 0.798x10 Pa-s

= kinematic viscosity = p/n
(1 Stokes =104 m?/s)
For water at 293K, =10°m?/s
p= density (kg/m?3)



Swimming E. coli

Fuorescently-labeled cells with
strobed laser illumination, using an
ordinary CCD cameraat These cells
where grown on T-broth. They are
about 1 um in diameter by 2 um long
and swim at about 30 pm/s

Turner et al. (2000) J. Bacteriol. 182( 10) 2793-2801



Velocity Components of E. col
Swimming

Rotation of E. coli f égellum: LengthL=10 m
—requency f=100Hz

PitchP=2 m

Diameter D=05 m




Drag Coeft cients

Small segment of length |

Angle with z-direction

Linear velocity v= Df

Angletan = D/P

Forces- viscous drag and propulsive

Propulsive force components:
perpendicular, parallel



Velocity of Swimming

V =vcosOsmO=mnD f sinOcosO

Since v=nDf
Where v = linear velocity along z-direction
D = diameter, f = frequency of rotation

EstimateV ~?



Reciprocal Deformation

Scallop
swimming _

Motion

Fast closing, slow opening
Single hinge

At low Re abacterium-sized clam-like mechanisms will go nowhere!

E.M. Purcell (1977) Life at Low Reynolds Numbers. Am. J. Phys. Vol 45, No. 1



Purcell’s Simple Swimmer

Q

\\\f
9,

3 plates, 2
hinges can X}
avold reciprocal \

motion- so long 3

as order of

folding up and R
opening (LR) is \

@‘
/



Oars In a Submarine in Molasses

Rigid Oars:. reciprocal motion
Flexible oars. Propulsion



Application

Centrifugation and separation

* Fractionation (cells, organelles, chromatin)
* Separation of proteins

* Purif cation



Centrifugation

Centrifugal force on each molecule ~ moyr

If particle size << distance from axis,
Force per unit mass approx. constant

Vdriﬁ — mgc/y

Frictional force drift velocity

g. = centrifugal force/mass, = friction coeff.



Size Depedent Separation

* Spherical particle frictional coeffYy = 6 1) R
* Svedberg (const)  §'=pp /[y

1S =103 sfor globular protein 1nm radius
Dependent on particle and nature of medium



Paper Reading

* E. M. Purcell (1977) Lifeat Low Reynolds
Numbers. Am. J. Phys.

* Chen and Springer (1999) An Automatic
Braking System That Stabilizes Leukocyte
Rolling by an Increase in Selectin Bond
Number with Shear. J.Cell.Bial.
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