Random Numbers

IDC 102 Chaitanya Athale

Stock Market Values

Outline

- Randomness
- Stochastic simulations
- Random number types
- How to generate a random number
- Transformations
- Quasi random numbers

REFERENCES

- Scientific Computing: An Introductory Survey <u>http://www.cse.illinois.edu/heath/scicomp/</u>
- The Nature of Mathematical Modelling- N. Gershenfeld.

Why do we need them?

- Games of chance
- Cryptography
- Statistical data sampling
- Computer simulations of diffusion, reaction, explosions
- Social simulations
- Systems with many coupled degrees of freedom with uncertainty in inputs
- Data optimization
- Evolutionary algorithms (genetic algorithms)

Anything where unpredictable outcomes are desired

Radioactive Decay

Scintillation counting

Radioactive decay

Beta particle/electron

Scintillant

Decay of fluor to ground state

Photons

Photomultiplier tube

Electrons, current

Evolutionary Algorithms

- Evolutionary algorithms inspired by biological evolution
 - Reproduction
 - Random mutation
 - Recombination
 - Selection
- Artificial Evolution
- No assumptions about fitness landscape
- Computationally complex
- Fitness function- selection of offspring for higher fitness
- Ex: Genetic algorithms, swarm optimization, stochastic hill climbing

Random Walks (drunken walk)

- On a one-dimensional plane
- Take step left I, right + I, or 0
- Over time, average displacement?
- Does one move at all?
- Brownian Motion
- Mean squared displacement
- Diffusion

Bancaud (2009)

Properties of a good random number generator (RNG)

Fast

As random as possible

Contradiction Typical computers 10⁹ operations/s Pseudo random number generators (PRNGs) True random number generators (TRNGs)

Random Variables

- Discrete
- Continuous

Unknown numerical variable that can take on or represent any possible element in sample space

Random Variables

X(s)

Where

$s \in S$

Sample space S in real numbers

Stochastic Simulations

- Mimics behaviour of system by exploiting randomness to obtain statistical sample of random outcomes
- Monte Carlo simulations (1940s)
- Used to study
 - Non deterministic processes
 - Complex deterministic systems that cannot be analytically treated
 - High dimensionality

Stanislaw Ulam

Stochastic simulations

Requirements for stochastic simulations

- Knowledge of probability distribution
- Supply of random numbers for making random choices
- Probability distribution: physical system
 - Diffusion of particle
 - Radioactive decay
- Large number of trials: Probability distribution more accurate with increasing no. of trials

Randomness

- Randomness associated with unpredictability
- No shorter description than itself
- Physical processes: flipping coin, roll of dice, etc.
- Even deterministic systems in chaotic regime due to sensitivity to initial conditions

Repeatability

- Lack of repeatability
- Hard to test

Independence of trials

How to Generate a Random Number

- Physical processes: examples?
- Computer algorithms: deterministic, output appears random
- Pseudorandom
- Predictable and repeatable (reproducible)
- Finite number possible- eventually repeats

RNGs

Properties of a good RNG

- Random pattern: passes statistical test of randomness
- Long period: goes on as long as possible before repeating
- Efficiency: Executes rapidly and requires little storage
- Repeatability: Produces the same sequence if started with the same initial conditions
- Portability: Runs on different kinds of computers, producing the same sequence

RNGs

- Early RNGs complex
- Mid-square method
- 5341
- ▶ Square ←
- 28<u>5262</u>81
- Take 5262
- Von Neumann (1949)
- For n digit numbers, period length < 8ⁿ
- Sensitive to zeros

Need for simple methods with well understood theoretical basis preferred

Congruential generators

Congruential random number generators

$$x_k = (ax_{k-1} + c)(\operatorname{mod} M)$$

Where a and c are given integers

Starting integer x_0 is called a **seed**

Integer M is approximately the largest integer represented on the machine

Quality of the generator depends on choice of a and c.

Period cannot exceed M

Congruential generators

- Reasonable random numbers only if a and c chosen very carefully
- Default random numbers with many systemscongruential- some very poor
- Congruential RNGs produce numbers between 0 and M
- Random floating point number uniformly distributed over interval [0,1), random numbers divided by M

Example

Linear Congruential Generator

- No. of possibilities set by M
- If x_n is even, x_{n+1} will be odd
- x_n oscillates at every step
- Solution: Degrees of freedom
 - run multiple, parallel generators and shuffle entries

Linear Feedback

- Linear congruential generator numbers not equally random
- Linear shift feedback registers (LSFR) provide alternative
- Recursion relation

Fibonacci Generators

- Fibonacci generators produce floating point random numbers on the interval [0, 1) directly as difference, sum, or product of previous values
- Typical example is a subtractive generator

$$x_k = x_{k-17} - x_{k-5}$$

- This generator has lags of 17 and 5
- Lags need to be chosen carefully to generate good subtractive generators
- The method might generate negative numbers- in which case the remedy is to add 1! Interval again [0, 1)

Fibonacci Generators

- Require more storage than congruential. Require special procedures to get started.
- Do not require division to obtain floating point results
- Well designed Fibonacci Generators have very good statistical properties
- Fibonacci Generators have a much longer period than congruential generators, since repetition of one member of sequence does not mean all others will also repeat in the same order

Sampling on Other Intervals

 If random number required to sample other distribution on some interval [a, b), modify values x_k generated on [0,1) by transformation:

$$(b - a)x_k + a$$

to obtain random numbers uniformly distributed on desired interval.

Non-Uniform Distributions

- Sampling non-uniform distributions more difficult
- If cumulative distribution function of probability distribution function (pdf) is invertible with ease, random samples can be generated with desired distribution, by generating uniform random numbers, and inverting them

• Eg.:
$$f(t) = \lambda e^{-\lambda t}, t > 0$$

We can take $x_k = -\log(1 - y_k)/\lambda$

Where y_k is uniform

Many important distributions are not easily invertible.
Special methods needed.

Normal Distribution

- Important random number distribution- normal with given mean and variance
- Most available routines assume mean = 0, variance = 1
- If other mean μ and variance σ^2 are required, each value x_k produced can be modified by $\sigma \cdot x_k + \mu$

Quasi Random Sequences

- For some applications achieving a coverage of the sampled volume more important than "true randomness"
- "Truly random" sequences show clumping
- Perfectly uniform coverage can be achieved by sample points on a regular grid. Doesn't scale well for higher dimensions
- Compromise- quasi random sequences

Quasi Random Sequences

- Not random
- Carefully constructed to sample volume and appear random
- Avoid each other
- Eliminate clumping

Example

NEXT

- Random number generators in common use
- Distributions and transformations
- Application of RNGs to scientific simulation problem