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Why do we need them?

Games of chance

Cryptography

Statistical data sampling

Computer simulations of diffusion, reaction, explosions
Social simulations

Systems with many coupled degrees of freedom with
uncertainty in inputs

Data optimization
Evolutionary algorithms (genetic algorithms)

Anything where unpredictable outcomes are desired



Radioactive Decay

Scintillation counting

Radioactive decay

Beta particle/electron
Scintillant

Decay of fluor to ground state
Photons

Photomultiplier tube

Electrons, current



Evolutionary Algorithms

Evolutionary algorithms inspired by biological evolution
Reproduction

Random mutation
Recombination

Selection
Artificial Evolution
No assumptions about fitness landscape
Computationally complex
Fitness function- selection of offspring for higher fitness

Ex: Genetic algorithms, swarm optimization, stochastic hill
climbing



Random Walks (drunken walk)

On a one-dimensional plane
Take step left -1, right +1,0r O
Over time, average displacement!?
Does one move at all?
Brownian Motion

Mean squared displacement
Diffusion

Bancaud (2009)



Properties of a good random number
generator (RNG)

Fast
As random as possible

Contradiction
Typical computers 107 operations/s
Pseudo random number generators (PRNGs)

True random number generators (TRNGs)



Random Variables

Discrete

Continuous

Unknown numerical variable that can take on or represent
any possible element in sample space



Random Variables

X($)
s& S

Sample space S in real numbers

Where



Stochastic Simulations

» Mimics behaviour of system by exploiting randomness to
obtain statistical sample of random outcomes

» Monte Carlo simulations (1940s)
» Used to study

Non deterministic processes

Complex deterministic systems that cannot be analytically
treated

High dimensionality

Stanislaw Ulam




Stochastic simulations

Requirements for stochastic simulations
Knowledge of probability distribution

Supply of random numbers for making random choices

Probability distribution: physical system
Diffusion of particle
Radioactive decay

Large number of trials: Probability distribution more
accurate with increasing no. of trials



Randomness

Randomness associated with unpredictability
No shorter description than itself
Physical processes: flipping coin, roll of dice, etc.

Even deterministic systems in chaotic regime due to
sensitivity to initial conditions



Repeatability

Lack of repeatability
-ard to test

ndependence of trials



How to Generate a Random Number

Physical processes: examples?

Computer algorithms: deterministic, output appears
random

Pseudorandom
Predictable and repeatable (reproducible)

Finite number possible- eventually repeats



RNGs
Properties of a good RNG

Random pattern: passes statistical test of randomness
Long period: goes on as long as possible before repeating
Efficiency: Executes rapidly and requires little storage

Repeatability: Produces the same sequence if started with
the same initial conditions

Portability: Runs on different kinds of computers,
producing the same sequence



RNGs

Early RNGs complex

Mid-square method
5341

Square <
2852628l

Take 5262

Von Neumann (1949)
For n digit numbers, period length < 8"

Sensitive to zeros

Need for simple methods with well understood theoretical basis
preferred



Congruential generators

Congruential random number generators
X, = (axk_1 + c)(mod M)

Where a and c are given integers

Starting integer X, is called a seed

Integer M is approximately the largest integer represented
on the machine

Quality of the generator depends on choice of a and c.
Period cannot exceed M



Congruential generators

4

Reasonable random numbers only if a and ¢ chosen very
carefully

Default random numbers with many systems-
congruential- some very poor

Congruential RNGs produce numbers between 0 and M

Random floating point number uniformly distributed over
interval [0, 1), random numbers divided by M



Example



Linear Congruential Generator

» No. of possibilities set by M
» If x is even, x_ ., will be odd

» X, oscillates at every step

» Solution: Degrees of freedom-

run multiple, parallel generators and shuffle entries



Linear Feedback

Linear congruential generator numbers not equally
random

Linear shift feedback registers (LSFR) provide alternative

Recursion relation

M

= E a,x, (mod2)

i=1

-~ X, I— T — e

A
Repeat time 2" ? ?

2(mod 2)




Fibonacci Generators

Fibonacci generators produce floating point random
numbers on the interval [0, |) directly as difference, sum,
or product of previous values

Typical example is a subtractive generator
X = X7 = Aies

This generator has lags of |7 and 5

Lags need to be chosen carefully to generate good
subtractive generators

The method might generate negative numbers- in which
case the remedy is to add |! Interval again [O, I)



Fibonacci Generators

Require more storage than congruential. Require special
procedures to get started.

Do not require division to obtain floating point results

WVell designed Fibonacci Generators have very good
statistical properties

Fibonacci Generators have a much longer period than
congruential generators, since repetition of one member
of sequence does not mean all others will also repeat in
the same order



Sampling on Other Intervals

If random number required to sample other distribution
on some interval [a, b), modify values x, generated on
[0,1) by transformation:

(b-a)x, +a

to obtain random numbers uniformly distributed on
desired interval.



Non-Uniform Distributions

Sampling non-uniform distributions more difficult

If cumulative distribution function of probability
distribution function (pdf) is invertible with ease, random
samples can be generated with desired distribution, by
generating uniform random numbers, and inverting them

T (D) =re Mt >0
We can take X, = —log(l — yk)/)\’

Where y, is uniform

Many important distributions are not easily invertible.
Special methods needed.



Normal Distribution

Important random number distribution- normal with
given mean and variance

Most available routines assume mean = 0, variance = |

If other mean u and variance o? are required, each value
X, produced can be modified by o X, + U



Quasi Random Sequences

For some applications achieving a coverage of the
sampled volume more important than “true randomness’

’

“Truly random” sequences show clumping

Perfectly uniform coverage can be achieved by sample
points on a regular grid. Doesn’t scale well for higher
dimensions

Compromise- quasi random sequences



Quasi Random Sequences

Not random
Carefully constructed to sample volume and appear
random

Avoid each other

Eliminate clumping



Example



NEXT

Random number generators in common use

Distributions and transformations

Application of RNGs to scientific simulation problem



