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Why do we need them? 
  Games of chance 
  Cryptography 
  Statistical data sampling 
  Computer simulations of diffusion, reaction, explosions 
  Social simulations 
  Systems with many coupled degrees of freedom with 

uncertainty in inputs 
  Data optimization 
  Evolutionary algorithms (genetic algorithms) 

Anything where unpredictable outcomes are desired 



Radioactive Decay 
Scintillation counting 

Radioactive decay  
Beta particle/electron 
Scintillant 
Decay of fluor to ground state  
Photons  
Photomultiplier tube 
Electrons, current 



Evolutionary Algorithms 
  Evolutionary algorithms inspired by biological evolution 

  Reproduction 
  Random mutation 
  Recombination 
  Selection 

  Artificial Evolution 
  No assumptions about fitness landscape 
  Computationally complex 
  Fitness function- selection of offspring for higher fitness 
  Ex: Genetic algorithms, swarm optimization, stochastic hill 

climbing 



Random Walks (drunken walk) 
  On a one-dimensional plane  
  Take step left -1, right +1, or 0 
  Over time, average displacement? 
  Does one move at all? 
  Brownian Motion 
  Mean squared displacement 
  Diffusion  

Bancaud (2009) 



Properties of a good random number 
generator (RNG) 

  Fast 
  As random as possible 

Contradiction 
Typical computers 109 operations/s 
Pseudo random number generators (PRNGs) 
True random number generators (TRNGs) 



Random Variables 
  Discrete 
  Continuous 

Unknown numerical variable that can take on or represent 
any possible element in sample space 



Random Variables 

Where 

Sample space S in real numbers 

€ 

X(s)
s∈ S



Stochastic Simulations 
  Mimics behaviour of system by exploiting randomness to 

obtain statistical sample of random outcomes 
  Monte Carlo simulations (1940s) 
  Used to study 

  Non deterministic processes 
  Complex deterministic systems that cannot be analytically 

treated  
  High dimensionality 

Stanislaw Ulam 



Stochastic simulations 
Requirements for stochastic simulations 
  Knowledge of probability distribution 
  Supply of random numbers for making random choices 

  Probability distribution: physical system 
  Diffusion of particle 
  Radioactive decay 

  Large number of trials: Probability distribution more 
accurate with increasing no. of trials 



Randomness 
  Randomness associated with unpredictability 
  No shorter description than itself 
  Physical processes: flipping coin, roll of dice, etc. 
  Even deterministic systems in chaotic regime due to 

sensitivity to initial conditions 



Repeatability 
  Lack of repeatability 
  Hard to test 
  Independence of trials 



How to Generate a Random Number 
  Physical processes: examples? 
  Computer algorithms: deterministic, output appears 

random 
  Pseudorandom 
  Predictable and repeatable (reproducible) 
  Finite number possible- eventually repeats 



RNGs 
Properties of a good RNG 
  Random pattern: passes statistical test of randomness 
  Long period: goes on as long as possible before repeating 
  Efficiency: Executes rapidly and requires little storage 
  Repeatability: Produces the same sequence if started with 

the same initial conditions 
  Portability: Runs on different kinds of computers, 

producing the same sequence 



RNGs 
  Early RNGs complex 
  Mid-square method 
         5341 
  Square 
         28526281 
  Take    5262 

  Von Neumann (1949) 
  For n digit numbers, period length < 8n 

  Sensitive to zeros 
Need for simple methods with well understood theoretical basis 
preferred 



Congruential generators 
  Congruential random number generators 

Where a and c are given integers 

Starting integer x0 is called a seed 
Integer M is approximately the largest integer represented 

on the machine 
Quality of the generator depends on choice of a and c. 
Period cannot exceed M 

€ 

xk = axk−1 + c( ) modM( )



Congruential generators 
  Reasonable random numbers only if a and c chosen very 

carefully 
  Default random numbers with many systems- 

congruential- some very poor 
  Congruential RNGs produce numbers between 0 and M 
  Random floating point number uniformly distributed over 

interval [0,1), random numbers divided by M 



Example 



Linear Congruential Generator 
  No. of possibilities set by M 
  If xn is even, xn+1 will be odd 
  xn oscillates at every step 

  Solution: Degrees of freedom-  
  run multiple, parallel generators and shuffle entries 



Linear Feedback 
  Linear congruential generator numbers not equally 

random 
  Linear shift feedback registers (LSFR) provide alternative 
  Recursion relation 

  Repeat time 2n 
€ 

xn = aixn−1 mod2( )
i=1

M

∑



Fibonacci Generators 
  Fibonacci generators produce floating point random 

numbers on the interval [0, 1) directly as difference, sum, 
or product of previous values 

  Typical example is a subtractive generator 

  This generator has lags of 17 and 5 
  Lags need to be chosen carefully to generate good 

subtractive generators 
  The method might generate negative numbers- in which 

case the remedy is to add 1! Interval again [0, 1) € 

xk = xk−17 − xk−5



Fibonacci Generators 
  Require more storage than congruential. Require special 

procedures to get started. 
  Do not require division to obtain floating point results 
  Well designed Fibonacci Generators have very good 

statistical properties 
  Fibonacci Generators have a much longer period than 

congruential generators, since repetition of one member 
of sequence does not mean all others will also repeat in 
the same order 



Sampling on Other Intervals 
  If random number required to sample other distribution 

on some interval [a, b), modify values xk generated on 
[0,1) by transformation: 

   to obtain random numbers uniformly distributed on 
desired interval. 

€ 

(b − a)xk + a



Non-Uniform Distributions 
  Sampling non-uniform distributions more difficult 
  If cumulative distribution function of probability 

distribution function (pdf) is invertible with ease, random 
samples can be generated with desired distribution, by 
generating uniform random numbers, and inverting them 

  Eg.: 

We can take 
Where yk is uniform 
  Many important distributions are not easily invertible. 

Special methods needed. € 

f (t) = λe−λt ,t > 0

€ 

xk = −log(1− yk ) λ



Normal Distribution 
  Important random number distribution- normal with 

given mean and variance 

  Most available routines assume mean = 0, variance = 1 

  If other mean µ and variance σ2 are required, each value 
xk produced can be modified by 

€ 

σ ⋅ xk + µ



Quasi Random Sequences 
  For some applications achieving a coverage of the 

sampled volume more important than “true randomness” 
  “Truly random” sequences show clumping 
  Perfectly uniform coverage can be achieved by sample 

points on a regular grid. Doesn’t scale well for higher 
dimensions 

  Compromise- quasi random sequences 



Quasi Random Sequences 
  Not random 
  Carefully constructed to sample volume and appear 

random 
  Avoid each other 
  Eliminate clumping 



Example 



NEXT 
  Random number generators in common use 
  Distributions and transformations 
  Application of RNGs to scientific simulation problem 


