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Why do we need them? 
  Games of chance 
  Cryptography 
  Statistical data sampling 
  Computer simulations of diffusion, reaction, explosions 
  Social simulations 
  Systems with many coupled degrees of freedom with 

uncertainty in inputs 
  Data optimization 
  Evolutionary algorithms (genetic algorithms) 

Anything where unpredictable outcomes are desired 



Radioactive Decay 
Scintillation counting 

Radioactive decay  
Beta particle/electron 
Scintillant 
Decay of fluor to ground state  
Photons  
Photomultiplier tube 
Electrons, current 



Evolutionary Algorithms 
  Evolutionary algorithms inspired by biological evolution 

  Reproduction 
  Random mutation 
  Recombination 
  Selection 

  Artificial Evolution 
  No assumptions about fitness landscape 
  Computationally complex 
  Fitness function- selection of offspring for higher fitness 
  Ex: Genetic algorithms, swarm optimization, stochastic hill 

climbing 



Random Walks (drunken walk) 
  On a one-dimensional plane  
  Take step left -1, right +1, or 0 
  Over time, average displacement? 
  Does one move at all? 
  Brownian Motion 
  Mean squared displacement 
  Diffusion  

Bancaud (2009) 



Properties of a good random number 
generator (RNG) 

  Fast 
  As random as possible 

Contradiction 
Typical computers 109 operations/s 
Pseudo random number generators (PRNGs) 
True random number generators (TRNGs) 



Random Variables 
  Discrete 
  Continuous 

Unknown numerical variable that can take on or represent 
any possible element in sample space 



Random Variables 

Where 

Sample space S in real numbers 

€ 

X(s)
s∈ S



Stochastic Simulations 
  Mimics behaviour of system by exploiting randomness to 

obtain statistical sample of random outcomes 
  Monte Carlo simulations (1940s) 
  Used to study 

  Non deterministic processes 
  Complex deterministic systems that cannot be analytically 

treated  
  High dimensionality 

Stanislaw Ulam 



Stochastic simulations 
Requirements for stochastic simulations 
  Knowledge of probability distribution 
  Supply of random numbers for making random choices 

  Probability distribution: physical system 
  Diffusion of particle 
  Radioactive decay 

  Large number of trials: Probability distribution more 
accurate with increasing no. of trials 



Randomness 
  Randomness associated with unpredictability 
  No shorter description than itself 
  Physical processes: flipping coin, roll of dice, etc. 
  Even deterministic systems in chaotic regime due to 

sensitivity to initial conditions 



Repeatability 
  Lack of repeatability 
  Hard to test 
  Independence of trials 



How to Generate a Random Number 
  Physical processes: examples? 
  Computer algorithms: deterministic, output appears 

random 
  Pseudorandom 
  Predictable and repeatable (reproducible) 
  Finite number possible- eventually repeats 



RNGs 
Properties of a good RNG 
  Random pattern: passes statistical test of randomness 
  Long period: goes on as long as possible before repeating 
  Efficiency: Executes rapidly and requires little storage 
  Repeatability: Produces the same sequence if started with 

the same initial conditions 
  Portability: Runs on different kinds of computers, 

producing the same sequence 



RNGs 
  Early RNGs complex 
  Mid-square method 
         5341 
  Square 
         28526281 
  Take    5262 

  Von Neumann (1949) 
  For n digit numbers, period length < 8n 

  Sensitive to zeros 
Need for simple methods with well understood theoretical basis 
preferred 



Congruential generators 
  Congruential random number generators 

Where a and c are given integers 

Starting integer x0 is called a seed 
Integer M is approximately the largest integer represented 

on the machine 
Quality of the generator depends on choice of a and c. 
Period cannot exceed M 

€ 

xk = axk−1 + c( ) modM( )



Congruential generators 
  Reasonable random numbers only if a and c chosen very 

carefully 
  Default random numbers with many systems- 

congruential- some very poor 
  Congruential RNGs produce numbers between 0 and M 
  Random floating point number uniformly distributed over 

interval [0,1), random numbers divided by M 



Example 



Linear Congruential Generator 
  No. of possibilities set by M 
  If xn is even, xn+1 will be odd 
  xn oscillates at every step 

  Solution: Degrees of freedom-  
  run multiple, parallel generators and shuffle entries 



Linear Feedback 
  Linear congruential generator numbers not equally 

random 
  Linear shift feedback registers (LSFR) provide alternative 
  Recursion relation 

  Repeat time 2n 
€ 

xn = aixn−1 mod2( )
i=1

M

∑



Fibonacci Generators 
  Fibonacci generators produce floating point random 

numbers on the interval [0, 1) directly as difference, sum, 
or product of previous values 

  Typical example is a subtractive generator 

  This generator has lags of 17 and 5 
  Lags need to be chosen carefully to generate good 

subtractive generators 
  The method might generate negative numbers- in which 

case the remedy is to add 1! Interval again [0, 1) € 

xk = xk−17 − xk−5



Fibonacci Generators 
  Require more storage than congruential. Require special 

procedures to get started. 
  Do not require division to obtain floating point results 
  Well designed Fibonacci Generators have very good 

statistical properties 
  Fibonacci Generators have a much longer period than 

congruential generators, since repetition of one member 
of sequence does not mean all others will also repeat in 
the same order 



Sampling on Other Intervals 
  If random number required to sample other distribution 

on some interval [a, b), modify values xk generated on 
[0,1) by transformation: 

   to obtain random numbers uniformly distributed on 
desired interval. 

€ 

(b − a)xk + a



Non-Uniform Distributions 
  Sampling non-uniform distributions more difficult 
  If cumulative distribution function of probability 

distribution function (pdf) is invertible with ease, random 
samples can be generated with desired distribution, by 
generating uniform random numbers, and inverting them 

  Eg.: 

We can take 
Where yk is uniform 
  Many important distributions are not easily invertible. 

Special methods needed. € 

f (t) = λe−λt ,t > 0

€ 

xk = −log(1− yk ) λ



Normal Distribution 
  Important random number distribution- normal with 

given mean and variance 

  Most available routines assume mean = 0, variance = 1 

  If other mean µ and variance σ2 are required, each value 
xk produced can be modified by 

€ 

σ ⋅ xk + µ



Quasi Random Sequences 
  For some applications achieving a coverage of the 

sampled volume more important than “true randomness” 
  “Truly random” sequences show clumping 
  Perfectly uniform coverage can be achieved by sample 

points on a regular grid. Doesn’t scale well for higher 
dimensions 

  Compromise- quasi random sequences 



Quasi Random Sequences 
  Not random 
  Carefully constructed to sample volume and appear 

random 
  Avoid each other 
  Eliminate clumping 



Example 



NEXT 
  Random number generators in common use 
  Distributions and transformations 
  Application of RNGs to scientific simulation problem 


