Chaos and Self-Organization



Population Growth

Simplest model:

Nii)=RN;

R>1implies N, = oo
lim j->o

R=1 N =1
lim i->c0

O<R<1 N =20
lim i-5e0

Resources are finite
Populations cannot grow infinitely



Population Growth with Carrying

Capacity
|+1_R(N )
R=r(1-K'N:)
r=birth rate, K=carrying capacity

=rN. (1-KIN,)

|+1

Dimensionless variable
x:=KIN.

X,.=rx(1—x)



Predictions

Does the population level reach a steady state
value?

s it dependent on initial value (x,)?
Does it depend on r?

Can the population become extinct?
Does the population ever oscillate?






Demonstration

Difference equation

Xi =X 1 —x;)



Steady State Analysis

x=0 stable x=0 unstable x=0 unstable
x=1-r1 stable | x=1-r'! unstable

I |
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Qualitative Behaviour

All solutions tend All solutions tend to Solutions continually
to x=0 x=1-r" vary in time

I | >
0 1 3 r

May R. (1974,1975)



Onset of Chaos

r=3
,=3.449
r,=3.544
.=3.570
2-cycle 4-cycle 8-cycle 16-cycle  32-cycle chaos
| | | v P R
M ¥ M3 My I r.

For r>3, no stable steady solution
3<r<3.499 solution of period n=2
3.544<r<3.57 succession of transitions n=18, 16, 32,... Period doubling

R>3.57 solution depends critically on initial conditions



Chaos

Poncaire (1903) “small differences in initial conditions produce
very great ones in the final phenomena”.

Lorenz (1963) Deterministic non-periodic flow. J. Atmos. Sci.
20:130-141.

Li & Yorke (1975)Period three implies chaos. Am.Math.
Monthly. 82: 985-992.

May R.M. (1976) Simple mathematical models with very
complicated dynamical behaviour. Nature 269: 459-467.

Deterministic equations, with even slightly different initial
conditions (1/103) lead to dramatic differences in predicted
time courses



Definition of Chaos

Aperiodic
Bounded

Deterministic

Sensitive dependence on initial conditions



Chaos in Cardiac Myocytes

Chicken embryonic ventricular heart cells
cultured

Cells spontaneously begin to contract
Measured electrical activity- action potential

LUt

|l sec

Guevara et al. (1986)



Phase Resetting by Depolarizing
Current

T,=768 ms
t.=238 ms

A T,=871 ms
T,=719 ms




Chaos from Periodic Stimulation

Finite difference equation

Phase ¢=t_/T,, 0<¢p<1 | i .P- .' re

AN
Oi=8(¢) +T(mod1) w , [
) 4}
T=interval between stimuli *
d=phase 0o Ea——ts
g(¢)= new phase P
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Self Organization

Deisboeck et al. (2001) Wikipedia



Diffusion Limited Aggregation
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B-Z Reaction

y Zhabotinsky and Chaikin
X ‘ (1971)
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Historical Timeline

Timeline | Key events in the application of self-organization concepts in cell biology

(1972-1977) Biological

i pattern formation®"*’. (199972005?
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Discovery of the Belousov-Zhabotinsky Dissipative systems!*#2, (1977-1984) Experimental Turing (1997-2001) Emergent Self-organized cell polarity® .
Bénard rolls*. oscillatory reaction'® %, Multicellular®* patterns*+’, cytoskeleton patterns
and mitotic spindle . from collective
self-organization®. Self-organized animal behaviours®’ 5,
populations***.

Self-organization: The dynamic organization that emerges from the collective behaviour

of agents, the individual properties of which cannot account for the properties of the final
dynamical pattern.



Template vs. Self-Organization

Rules complex, global Rules simple, local

Equilibrium Out of equilibrium

Structure apparent from component System property non-intuitive property of
behaviour whole

Eg. Central dogma of molecular biology, Eg. DLA, Turing patterns, non-linear

self-assembly dynamics, feedback loops




Central Dogma

Protein Metabolites




Self Organization in Biology:

Landmarks

D’arcy Wentworth Thompson (1917) On growth and
form.

Alfred J. Lotka (1910) The theory of autocatalytic
chemical reactions.

Vito Volterra (1926) A statistical analysis of fish
catches in the Adriatic

Turing (1952) ‘The chemical basis of
morphogenesis’ from Philosophical Transactions
of the Royal Society of London, Series B, No.641,
Vol. 237.
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Finding the Centre in E. coli

Centre finding 1. Min inhibition of FtsZ

2. Nucleoid Occlusion

Polymerization

Formation of a Z-ring
ring of FtsZ

Division

Septation




Finding the Centre
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The Min cycle MinD inhibits FtsZ polymerization

Meacci G. et al. (2006) Phys Biol. 3, p255



Diffusion Reaction Patterns

MinE MinD Merge

Min protein waves.
MinD (1 uM), doped with 20% Bodipy-labeled MinD (green), MinE (1
1UM), doped with 10% Alexa647-labeled MinE (red).

Scale bar is 50 um, frames are 9 s apart

Loose M, et al (2008) Science, 320, p789



Next

Mathematical modeling and Biology (3)
a. Theories for Signal transduction (1)
b. Developmental biological models (2)






Properties of Chaotic Systems

Sensitive dependence on initial conditions

Grahically: loss of neighbourhood in terms of location
X(t) time-series diverges

Any small difference explodes exponentially

Exact information about system equations, limited
precision of present conditions snowball over time

Initial conditions if known with infinite precision, minimal
errors in computation will destroy long-term prediction



