Physics
Prof. Arindam Ghosh
IISC Bangalore
Abstract:
Van der Waals heterostructures represent a new paradigm of material design, where two atomic or molecular planes of different chemical origin are brought together within the sub-nanometer van der Waals distance. When two atomic layers are placed so close their electronic states may hybridize, and the physical properties are modified by the rules of momentum conservation and structural commensurability. In this talk I shall present several new physical phenomena, in multiple domains ranging from electronic, opto-electronic to thermoelectric properties, that emerge as a result of van der Waals heterostructuring of two-dimensional (2D) materials. Apart from achieving high carrier mobility and ultra-low noise in electrical transport, encapsulating graphene by boron nitride leads to manifestation of edge transport and trigonal warping at low energies. Optoelectronic properties are strongly enhanced on graphene and transition metal dichalcogenide heterostructures, that can be extended to single photon detection. I shall also show new phenomena in thermoelectric transport in twisted bilayer graphene, where the Seebeck coefficient is strongly determined by the angular misorientation between the graphene layers in the van der Waals stack.